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Android Asynchronous Programming

 Android adopts single-thread model
 Main thread: GUI update
 Background thread: time-consuming or CPU (IO)-blocking task

 Android provides packaged components to simplify async programming
 AsyncTask
 IntentService
 HandlerThread
 …

 How do developers use these components?



Motivation
 Empirical study on three repositories: F-Droid(1184), GooglePlay(6808), Wandoujia(5669)
 The improper use of AsyncTask can lead to many problems

 Memory leak
 Wrong update
 …

 We have developed a static analysis tool called AsyncChecker to detect misuse of AsyncTask



Background of AsyncTask

 onPreExecute

 doInBackground

 onProgressUpdate

 onCancelled

 onPostExecute
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Misuse Pattern

 StrongReference

 NotCancel

 NotTerminate

 EarlyCancel

 RepeatStart



Example of StrongReference

 An instance of AsyncTask holds 
strong reference to Activity 

 AsyncTask lives longer than Activity

 The memory of Activity cannot be 
garbage collected



Example of NotCancel

 AsyncTask is not canceled before 
the destruction of Activity

 onPostExecute() contains GUI 
update operation

 Wrong update 



Example of NotTerminate
 AsyncTask can’t be terminated after cancel() is invoked

 Check isCancelled() periodically within a loop in doInBackground()



Example of EarlyCancel and RepeatStart

 EarlyCancel

 RepeatStart
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Overview of AsyncChecker
 Typestate Analysis (NotCancel, EarlyCancel, RepeatStart)
 Reference Analysis (StrongReference)
 Loop Analysis (NotTerminate)



Partial Inter-procedural Strategy

 Most of the operations in an app are AsyncTask-irrelevant 

 Only perform inter-procedural analysis for methods that contain AsyncTask-
related statements

 May interprocedural-analysis for call site 

 Traverse all possible invoked methods



Typestate Analysis (NotCancel, EarlyCancel, RepeatStart)

 A typestate denotes the state an object can 
occupy during execution 

 The operations on an AsyncTask object 
such as execute() and cancel() can change 
its state 

 Build the AsyncTask State Transition (ATST) 
model

 TypeState analysis is also the basis of 
reference analysis



Reference Analysis (StrongReference)

 Build the mapping relation from the 
fields of AsyncTask to the GUI objects

 Possession operation (AssignStmt)
 Left: field of AsyncTask
 Right: GUI object

 The type of an GUI object is the 
subclass of View or Activity 

 WeakReference or reference to non-
GUI object does not lead to 
StrongReference



Loop Analysis (NotTerminate)

 Identify loop structure and the invocation of isCancelled() in doInBackground()
 Perform loop analysis in bottom-up manner via topological sort
 Use a set to save loops that do not contain terminate operation 



Implementation
 AsyncChecker is based on Androlic [1]
 Analyze the semantics of statements via the core engine of Androlic 
 Implement some APIs of Androlic

 IMethodInterProceduralJudge (Partial inter-procedural strategy)
 NewRefHeapObject (AsyncTaskHeapObject)
 AbstractTypeState (AsyncTypeState)
 ILibraryInvocationProcessor (identify AsyncTask operation)

 AsyncChecker is open source (https://github.com/pangeneral/AsyncChecker)

[1] Linjie Pan, et al. Androlic: an extensible flow, context, object, field, and path-sensitive static 
analysis framework for Android. In ISSTA 2019.
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Evaluation

 RQ1: How effective is AsyncChecker on self-designed benchmark?

 RQ2: Can AsyncChecker find the misuse of AsyncTask in real-world 
applications?

 RQ3: How effective is AsyncChecker against existing tools?

 RQ4: Do developers take the misuse of AsyncTask as a serious problem? 



AsyncChecker on Benchmark

 Design an AsyncTask-specifc benchmark suite called AsyncBench
 AsyncBench contains 69 manually written Android apps



AsyncChecker on Real-world Applications
 Among 1759 real-world apps, 1417 (80.6%) contain at least one misused 

AsyncTask instance
 The frequency of EarlyCancel and RepeatStart are lower than rest patterns



Efficiency of AsyncChecker
 Average running time is 82 (F-Droid), 198 (GooglePlay) and 228

(Wandoujia) seconds respectively 



Validation
 Randomly select 22 apps from F-Droid
 Precision, Recall and F-measure are 97.2%, 89.8% and 0.93 respectively



Comparison with Existing Tools
 Existing tools: APEChecker [1] and DiagDroid [2]
 Obtain source code of DiagDroid
 Compare the results of DiagDroid and AsyncChecker on 22 apps from F-Droid

[1] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, and Geguang Pu. Efficiently manifesting asynchronous programming errors in Android apps. In 
ASE’18, Montpellier, France, September 3-7. 486–497. 
[2] Yu Kang, Yangfan Zhou, Hui Xu, and Michael R. Lyu. 2016. DiagDroid: Android Performance Diagnosis via Anatomizing Asynchronous Executions. In FSE’16, Seattle, 
WA, USA, November 13-18. 410–421. 



Feedback from Developers
 Report issues of 17 apps to developers of F-Droid applications via GitHub  
 Most of the problems that have been fixed are caused by StrongReference
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Conclusion

 Summarize five misuse patterns of AsyncTask

 Develop a static analysis tool called AsyncChecker

 Misuses of AsyncTask exists in real-world apps (up to 80.6% in 1,759 apps)



Thank you!
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