
Static Asynchronous Component Misuse Detection
for Android Applications

ESEC/FSE 2020

Linjie Pan, Baoquan Cui, Hao Liu, Jiwei Yan, Siqi Wang,
Jun Yan and Jian Zhang

Institute of Software, Chinese Academy of Sciences
Presenter: Linjie Pan

Contents

 Introduction

 Misuse Pattern

 Approach

 Evaluation

 Conclusion

Android Asynchronous Programming

 Android adopts single-thread model
 Main thread: GUI update
 Background thread: time-consuming or CPU (IO)-blocking task

 Android provides packaged components to simplify async programming
 AsyncTask
 IntentService
 HandlerThread
 …

 How do developers use these components?

Motivation
 Empirical study on three repositories: F-Droid(1184), GooglePlay(6808), Wandoujia(5669)
 The improper use of AsyncTask can lead to many problems

 Memory leak
 Wrong update
 …

 We have developed a static analysis tool called AsyncChecker to detect misuse of AsyncTask

Background of AsyncTask

 onPreExecute

 doInBackground

 onProgressUpdate

 onCancelled

 onPostExecute

Contents

 Introduction

 Misuse Pattern

 Approach

 Evaluation

 Conclusion

Misuse Pattern

 StrongReference

 NotCancel

 NotTerminate

 EarlyCancel

 RepeatStart

Example of StrongReference

 An instance of AsyncTask holds
strong reference to Activity

 AsyncTask lives longer than Activity

 The memory of Activity cannot be
garbage collected

Example of NotCancel

 AsyncTask is not canceled before
the destruction of Activity

 onPostExecute() contains GUI
update operation

 Wrong update

Example of NotTerminate
 AsyncTask can’t be terminated after cancel() is invoked

 Check isCancelled() periodically within a loop in doInBackground()

Example of EarlyCancel and RepeatStart

 EarlyCancel

 RepeatStart

Contents

 Introduction

 Misuse Pattern

 Approach

 Evaluation

 Conclusion

Overview of AsyncChecker
 Typestate Analysis (NotCancel, EarlyCancel, RepeatStart)
 Reference Analysis (StrongReference)
 Loop Analysis (NotTerminate)

Partial Inter-procedural Strategy

 Most of the operations in an app are AsyncTask-irrelevant

 Only perform inter-procedural analysis for methods that contain AsyncTask-
related statements

 May interprocedural-analysis for call site

 Traverse all possible invoked methods

Typestate Analysis (NotCancel, EarlyCancel, RepeatStart)

 A typestate denotes the state an object can
occupy during execution

 The operations on an AsyncTask object
such as execute() and cancel() can change
its state

 Build the AsyncTask State Transition (ATST)
model

 TypeState analysis is also the basis of
reference analysis

Reference Analysis (StrongReference)

 Build the mapping relation from the
fields of AsyncTask to the GUI objects

 Possession operation (AssignStmt)
 Left: field of AsyncTask
 Right: GUI object

 The type of an GUI object is the
subclass of View or Activity

 WeakReference or reference to non-
GUI object does not lead to
StrongReference

Loop Analysis (NotTerminate)

 Identify loop structure and the invocation of isCancelled() in doInBackground()
 Perform loop analysis in bottom-up manner via topological sort
 Use a set to save loops that do not contain terminate operation

Implementation
 AsyncChecker is based on Androlic [1]
 Analyze the semantics of statements via the core engine of Androlic
 Implement some APIs of Androlic

 IMethodInterProceduralJudge (Partial inter-procedural strategy)
 NewRefHeapObject (AsyncTaskHeapObject)
 AbstractTypeState (AsyncTypeState)
 ILibraryInvocationProcessor (identify AsyncTask operation)

 AsyncChecker is open source (https://github.com/pangeneral/AsyncChecker)

[1] Linjie Pan, et al. Androlic: an extensible flow, context, object, field, and path-sensitive static
analysis framework for Android. In ISSTA 2019.

Contents

 Introduction

 Misuse Pattern

 Approach

 Evaluation

 Conclusion

Evaluation

 RQ1: How effective is AsyncChecker on self-designed benchmark?

 RQ2: Can AsyncChecker find the misuse of AsyncTask in real-world
applications?

 RQ3: How effective is AsyncChecker against existing tools?

 RQ4: Do developers take the misuse of AsyncTask as a serious problem?

AsyncChecker on Benchmark

 Design an AsyncTask-specifc benchmark suite called AsyncBench
 AsyncBench contains 69 manually written Android apps

AsyncChecker on Real-world Applications
 Among 1759 real-world apps, 1417 (80.6%) contain at least one misused

AsyncTask instance
 The frequency of EarlyCancel and RepeatStart are lower than rest patterns

Efficiency of AsyncChecker
 Average running time is 82 (F-Droid), 198 (GooglePlay) and 228

(Wandoujia) seconds respectively

Validation
 Randomly select 22 apps from F-Droid
 Precision, Recall and F-measure are 97.2%, 89.8% and 0.93 respectively

Comparison with Existing Tools
 Existing tools: APEChecker [1] and DiagDroid [2]
 Obtain source code of DiagDroid
 Compare the results of DiagDroid and AsyncChecker on 22 apps from F-Droid

[1] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, and Geguang Pu. Efficiently manifesting asynchronous programming errors in Android apps. In
ASE’18, Montpellier, France, September 3-7. 486–497.
[2] Yu Kang, Yangfan Zhou, Hui Xu, and Michael R. Lyu. 2016. DiagDroid: Android Performance Diagnosis via Anatomizing Asynchronous Executions. In FSE’16, Seattle,
WA, USA, November 13-18. 410–421.

Feedback from Developers
 Report issues of 17 apps to developers of F-Droid applications via GitHub
 Most of the problems that have been fixed are caused by StrongReference

Contents

 Introduction

 Misuse Pattern

 Approach

 Evaluation

 Conclusion

Conclusion

 Summarize five misuse patterns of AsyncTask

 Develop a static analysis tool called AsyncChecker

 Misuses of AsyncTask exists in real-world apps (up to 80.6% in 1,759 apps)

Thank you!

	幻灯片编号 1
	Contents
	Android Asynchronous Programming
	Motivation
	Background of AsyncTask
	Contents
	Misuse Pattern
	Example of StrongReference
	Example of NotCancel
	Example of NotTerminate
	Example of EarlyCancel and RepeatStart
	Contents
	Overview of AsyncChecker
	Partial Inter-procedural Strategy
	Typestate Analysis (NotCancel, EarlyCancel, RepeatStart)
	Reference Analysis (StrongReference)
	Loop Analysis (NotTerminate)
	Implementation
	Contents
	Evaluation
	AsyncChecker on Benchmark
	AsyncChecker on Real-world Applications
	Efficiency of AsyncChecker
	Validation
	Comparison with Existing Tools
	Feedback from Developers
	Contents
	Conclusion
	幻灯片编号 29

