
Static Asynchronous Component Misuse Detection
for Android Applications

ESEC/FSE 2020

Linjie Pan, Baoquan Cui, Hao Liu, Jiwei Yan, Siqi Wang,
Jun Yan and Jian Zhang

Institute of Software, Chinese Academy of Sciences
Presenter: Linjie Pan

Contents

 Introduction

 Misuse Pattern

 Approach

 Evaluation

 Conclusion

Android Asynchronous Programming

 Android adopts single-thread model
 Main thread: GUI update
 Background thread: time-consuming or CPU (IO)-blocking task

 Android provides packaged components to simplify async programming
 AsyncTask
 IntentService
 HandlerThread
 …

 How do developers use these components?

Motivation
 Empirical study on three repositories: F-Droid(1184), GooglePlay(6808), Wandoujia(5669)
 The improper use of AsyncTask can lead to many problems

 Memory leak
 Wrong update
 …

 We have developed a static analysis tool called AsyncChecker to detect misuse of AsyncTask

Background of AsyncTask

 onPreExecute

 doInBackground

 onProgressUpdate

 onCancelled

 onPostExecute

Contents

 Introduction

 Misuse Pattern

 Approach

 Evaluation

 Conclusion

Misuse Pattern

 StrongReference

 NotCancel

 NotTerminate

 EarlyCancel

 RepeatStart

Example of StrongReference

 An instance of AsyncTask holds
strong reference to Activity

 AsyncTask lives longer than Activity

 The memory of Activity cannot be
garbage collected

Example of NotCancel

 AsyncTask is not canceled before
the destruction of Activity

 onPostExecute() contains GUI
update operation

 Wrong update

Example of NotTerminate
 AsyncTask can’t be terminated after cancel() is invoked

 Check isCancelled() periodically within a loop in doInBackground()

Example of EarlyCancel and RepeatStart

 EarlyCancel

 RepeatStart

Contents

 Introduction

 Misuse Pattern

 Approach

 Evaluation

 Conclusion

Overview of AsyncChecker
 Typestate Analysis (NotCancel, EarlyCancel, RepeatStart)
 Reference Analysis (StrongReference)
 Loop Analysis (NotTerminate)

Partial Inter-procedural Strategy

 Most of the operations in an app are AsyncTask-irrelevant

 Only perform inter-procedural analysis for methods that contain AsyncTask-
related statements

 May interprocedural-analysis for call site

 Traverse all possible invoked methods

Typestate Analysis (NotCancel, EarlyCancel, RepeatStart)

 A typestate denotes the state an object can
occupy during execution

 The operations on an AsyncTask object
such as execute() and cancel() can change
its state

 Build the AsyncTask State Transition (ATST)
model

 TypeState analysis is also the basis of
reference analysis

Reference Analysis (StrongReference)

 Build the mapping relation from the
fields of AsyncTask to the GUI objects

 Possession operation (AssignStmt)
 Left: field of AsyncTask
 Right: GUI object

 The type of an GUI object is the
subclass of View or Activity

 WeakReference or reference to non-
GUI object does not lead to
StrongReference

Loop Analysis (NotTerminate)

 Identify loop structure and the invocation of isCancelled() in doInBackground()
 Perform loop analysis in bottom-up manner via topological sort
 Use a set to save loops that do not contain terminate operation

Implementation
 AsyncChecker is based on Androlic [1]
 Analyze the semantics of statements via the core engine of Androlic
 Implement some APIs of Androlic

 IMethodInterProceduralJudge (Partial inter-procedural strategy)
 NewRefHeapObject (AsyncTaskHeapObject)
 AbstractTypeState (AsyncTypeState)
 ILibraryInvocationProcessor (identify AsyncTask operation)

 AsyncChecker is open source (https://github.com/pangeneral/AsyncChecker)

[1] Linjie Pan, et al. Androlic: an extensible flow, context, object, field, and path-sensitive static
analysis framework for Android. In ISSTA 2019.

Contents

 Introduction

 Misuse Pattern

 Approach

 Evaluation

 Conclusion

Evaluation

 RQ1: How effective is AsyncChecker on self-designed benchmark?

 RQ2: Can AsyncChecker find the misuse of AsyncTask in real-world
applications?

 RQ3: How effective is AsyncChecker against existing tools?

 RQ4: Do developers take the misuse of AsyncTask as a serious problem?

AsyncChecker on Benchmark

 Design an AsyncTask-specifc benchmark suite called AsyncBench
 AsyncBench contains 69 manually written Android apps

AsyncChecker on Real-world Applications
 Among 1759 real-world apps, 1417 (80.6%) contain at least one misused

AsyncTask instance
 The frequency of EarlyCancel and RepeatStart are lower than rest patterns

Efficiency of AsyncChecker
 Average running time is 82 (F-Droid), 198 (GooglePlay) and 228

(Wandoujia) seconds respectively

Validation
 Randomly select 22 apps from F-Droid
 Precision, Recall and F-measure are 97.2%, 89.8% and 0.93 respectively

Comparison with Existing Tools
 Existing tools: APEChecker [1] and DiagDroid [2]
 Obtain source code of DiagDroid
 Compare the results of DiagDroid and AsyncChecker on 22 apps from F-Droid

[1] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, and Geguang Pu. Efficiently manifesting asynchronous programming errors in Android apps. In
ASE’18, Montpellier, France, September 3-7. 486–497.
[2] Yu Kang, Yangfan Zhou, Hui Xu, and Michael R. Lyu. 2016. DiagDroid: Android Performance Diagnosis via Anatomizing Asynchronous Executions. In FSE’16, Seattle,
WA, USA, November 13-18. 410–421.

Feedback from Developers
 Report issues of 17 apps to developers of F-Droid applications via GitHub
 Most of the problems that have been fixed are caused by StrongReference

Contents

 Introduction

 Misuse Pattern

 Approach

 Evaluation

 Conclusion

Conclusion

 Summarize five misuse patterns of AsyncTask

 Develop a static analysis tool called AsyncChecker

 Misuses of AsyncTask exists in real-world apps (up to 80.6% in 1,759 apps)

Thank you!

	幻灯片编号 1
	Contents
	Android Asynchronous Programming
	Motivation
	Background of AsyncTask
	Contents
	Misuse Pattern
	Example of StrongReference
	Example of NotCancel
	Example of NotTerminate
	Example of EarlyCancel and RepeatStart
	Contents
	Overview of AsyncChecker
	Partial Inter-procedural Strategy
	Typestate Analysis (NotCancel, EarlyCancel, RepeatStart)
	Reference Analysis (StrongReference)
	Loop Analysis (NotTerminate)
	Implementation
	Contents
	Evaluation
	AsyncChecker on Benchmark
	AsyncChecker on Real-world Applications
	Efficiency of AsyncChecker
	Validation
	Comparison with Existing Tools
	Feedback from Developers
	Contents
	Conclusion
	幻灯片编号 29

