
String Test Data Generation for Java Programs

Miaomiao Wang, Baoquan Cui, Jiwei Yan, Jun Yan, Jian Zhang

Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, Beijing, China
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

University of Chinese Academy of Sciences, Beijing, China

ISSRE 2022

Overview
 Introduction

 String Test Data Generation
 Existing Work

 Preliminary
 String API Usage
 Motivating Example

 Our Approach
 API-Regex Mapping
 String API Invocation Sequence Extraction
 Regex Generation

 Evaluation
 DataSets and Experimental Results
 Case Study

 Conclusion
2

1.1 String Test Data Generation

 String operations in Java programs are mostly performed by calling string APIs.

 We need to understand the semantics of the API to generate suitable test data.

multiple string API combination

complex semantics for single API

3

1.2 Existing Work
• SMT Solvers([1]-[8]):

• SMT-LIB[9] cannot support the split(...) method and the lastIndexOf(...) method
• The automatic conversion from the string API combinations to SMT formats is not supported.

• test case generation
• EvoSuite[10]

• Seeding Strategy [11] : It supports single and simple string APIs to seed data and mutate
• Randoop[12]

• feedback-directed random test generation
• It does not intentionally generate string-related data.

[1] Norn: An SMT Solver for String Constraints
[2] String constraints with concatenation and transducers solved efficiently
[3] Towards Constraint Logic Programming over Strings for Test Data Generation
[4] On Solving Word Equations Using SAT.
[5] Z3str4: A Solver for Theories over Strings
[6] cvc5: A Versatile and Industrial-Strength SMT Solver
[7] A decision procedure for path feasibility of string manipulating programs with integer data type
[8] Solving string constraints with regex-dependent functions through transducers with priorities and variables
[9] https://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
[10] Evosuite: automatic test suite generation for object-oriented software
[11] Seeding strategies in search-based unit test generation
[12] Randoop: feedback-directed random testing for java

4

Overview
 Introduction

 String Test Data Generation
 Existing Work

 Preliminary
 String API Usage
 Motivating Example

 Our Approach
 API-Regex Mapping
 String API Invocation Sequence Extraction
 Regex Generation

 Evaluation
 DataSets and Experimental Results
 Case Study

 Conclusion
5

• The combinations of string APIs make up 8.5% (1068/12604).
• 73.1% (9219/12604) of string API invocations or their combinations have

affected the branches in the programs.
6

2.1 String API Usage

2.2 Motivating Example

• SMT solvers, EvoSuite and Randoop can not generate suitable test data to cover
the true branch.

• The purpose of this paper is to generate regular expressions:
• cover the branches
• trigger the potential exception proactively

ArrayIndexOutOfBoundsException

StringIndexOutOfBoundsException

7

Overview
 Introduction

 String Test Data Generation
 Existing Work

 Preliminary
 String API Usage
 Motivating Example

Our Approach
 API-Regex Mapping
 String API Invocation Sequence Extraction
 Regex Generation

 Evaluation
 DataSets and Experimental Results
 Case Study

 Conclusion
8

Our Approach

9

3.1 SAIS Extraction

StringParaPath

10

Definition III-A1. (StringParaPath)

A StringParaPath is the path in a method
which contains at least one string API
invocation statement on the local variable of the
string parameter.

Definition III-A2. (String API Invocation Sequence (SAIS))
A SAIS is a 2-tuple

SAIS = <CondExpr, Trajectory>
where the CondExpr is a conditional expression in the
StringParaPath, and the Trajectory is a k-length list of ordered
pairs

<(stmt1, map1), (stmt2, map2), ..., (stmtk, mapk)>
where the stmti in each pair is a string API invocation statement
related to the conditional expression and the mapi maps the
variables in the stmti to their values.

3.1 SAIS Extraction

11

3.1 SAIS Extraction

12

3.2 API-Regex Mapping

• Terminated API.
• The API whose return type is char, int, boolean, char[] or byte[], that is,

primitive type or its array type, is considered as a terminated API (Total: 15). In
general, its return value is used directly in the conditional expression

• Non-terminated API.
• The API whose return type is String, CharSequence or String[] is considered as

a non-terminated API (Total: 33). Their return values cannot appear directly in
conditional expressions.

13

3.2 API-Regex Mapping

14

 Definition (RegexWrapper)
A RegexWrapper is a 4-tuple
• R is the regular expression according to the string API and the expression on its return value;
• L is the length of the string that the R allows to merge and –1 indicates that there is no limit

for the length;
• S is the a special regular expression with which to replace during inference if the any

character regular expression is in the suffix of the R;
• Lmin is the minimum length of a string corresponding to the R;

 Definition (API-Regex Mapping)
A API-Regex Mapping is a 2-tuple

where APIPair is a pair including the string API invocation and its related conditional
expression, and RegexWrapper is defined before.

3.2 API-Regex Mapping

15

https://github.com/suoyi123wang/JustinStr

3.3 Regex Generation

R: “[\s\S]{3}”
L: 5
S: Null
Lmin: 3

R: “[#]{2}”
L: -1
S: [^#]
Lmin: 2

R: “class”
L: -1
S: Null
Lmin : 5

R: “class”
L: -1
S: Null
Lmin: 5

R: “[\s\S]{3}class”
L: -1
S: Null
Lmin: 8

R:“[#]{2}[^#]{3}class”
L: -1
S: Null
Lmin: 10

getW
rapperFrom

Point

getWrapperFromPointgetWrapperFromPoint

mergemerge

API Invo:
subStr=splitStr.substring(3,8)
CondExpr:
NULL

API Invo:
r=subStr.equals(“class”)
CondExpr:
r=True

API Invo:
splitStr=str.split(“#”)[2]
CondExpr:
NULL

16

3.3 Regex Generation

[#]{2}[ˆ#]{3}class

RgxGen:“##abcclass”

Cover the true branch (line 6)
17

Overview
 Introduction

 String Test Data Generation
 Existing Work

 Preliminary
 String API Usage
 Motivating Example

 Our Approach
 API-Regex Mapping
 String API Invocation Sequence Extraction
 Regex Generation

 Evaluation
 DataSets and Experimental Results
 Case Study

 Conclusion
18

4.1 DataSets

19

4.2 Experimental Results
• RQ1: How effectively does Justin-Str characterize the input string

parameters?

• 85x5 = 425 methods,
• Each one ends with a branch (T/F)

20

• RQ2: Improvement of the branch coverage

• +22%(40/186) of the method
• up to +57%, and +17% on average

4.2 Experimental Results

21

• RQ3: Bug Finding

4.2 Experimental Results

22

• RQ3: Bug Finding (Order)

4.2 Experimental Results

23

• The first two test cases in JustinStr can trigger 74% of the bugs, while EvoSuite only triggers 36%.

4.3 Case Study

https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8278186
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8278993

Infinite loop:
Regex: [[\s\S]*

String: [

24

StringIndexOutOfBoundsException
Regex: "[\s\S]{1}xpointer\(id[\s\S]*

String: 0xpointer(id(G6

Overview
 Introduction

 String Test Data Generation
 Existing Work

 Preliminary
 String API Usage
 Motivating Example

 Our Approach
 API-Regex Mapping
 String API Invocation Sequence Extraction
 Regex Generation

 Evaluation
 DataSets and Experimental Results
 Case Study

 Conclusion
25

Conclusion
• API-Regex Mapping. We build a mapping from 48 string APIs to regular expressions

based on their semantics, which are equivalent or approximate.

• Inference Algorithm: We design an inference algorithm that can characterize the string
parameter with regular expressions under the combination of its string API invocations.

• String Test Data Generation Tool. We developed an automatic tool JustinStr to output
the string test data for test cases generation.

 Future work:
• Convert the string API with the symbolic value into regular expressions.

• Support for converting more string APIs to regular expressions.

26

Q & A

