
Detection of Java Basic Thread Misuses
Based on Static Event Analysis

Baoquan Cui, Miaomiao Wang, Chi Zhang, Jiwei Yan, Jun Yan and Jian Zhang

Email: cuibq@ios.ac.cn
Institute of Software, Chinese Academy of Sciences (ISCAS)

University of Chinese Academy of Sciences (UCAS)

ASE 2023 Presented by Baoquan Cui (崔保全) Sep 13

Typical Error-prone Example of Thread (1)
class Destructible {

// resource release
void destroy(){…}

}

class T extends Thread{
Destructible d;
void set(Destructible d){ this. d = d}
void run(){…} }

void main(…){//start the thread and try to destroy the object d
T t = new T();
Destructible d = new Destructible();
t.set(d);
t.start();
d.destroy();

}

• An object d may destroy itself

• But active thread t will block the release of the object d
• As the thread t has a strong reference of its field d

• A memory leak happens (until the thread finishes)
• Called Hard To Release (HTR) in this paper

Typical Error-prone Example of Thread (2)

• The interruption will lose response
• As a running thread will only set the interrupted status.

• The thread will continue executing. (Unnecessary processor usage and
time wasting)

• Called Interrupt NoResponding (INR) in this paper

class T extends Thread{
void run(){

int i = 0；
while(i<1000000){

// task
}

}
}

// start the thread and try to interrupt it
void main(…){

Thread t = new T();
t.start();
…
t.interrupt();

}

A Real Execution of Program with INR
// start the thread and interrupt it immediately
// task: print number

//output

• The interruption has no response
• Unless the following statement is added

• if(isInterrupted()){break;}

Related works and approaches

• AsyncChecker [1]
• For AsyncTask (android.os.AsyncTask)

• Deprecated in Android API level 30
• Destructible classes: Activity and View

• Path-sensitive approach
• Time consuming

• Other works
• Focus on the data race in Java/Android concurrent programs

[1]Pan et al. Static asynchronous component misuse detection for Android applications. ESEC/SIGSOFT FSE 2020

CH

CFG

CG

Java
Bytecode

Event
Definition

Extraction Thread Event

Destructible
Object Event

“Destroy”
Rules Events

Alias
Analysis

Interrupted
Status Check

HB Analysis

Patterns

A
na

ly
si

s

Bug
Reports

Pr
ep

ro
ce

ss
in

g

Detection

HTR

INR

NTT

isAlias(v1 , v2)

breakCheck(m)

HB(E1 , E2)

Overview of Static Event Analysis Approach

Static Event Analysis Approach

void main(…){
T t = new T();
Destructible d = new Destructible();
t.set(d);
t.start();
d.destroy();
t.interrupt();

}

class T extends Thread{
void run(){

if(isInterrupted()){break;}
}

}

Interrupted Check Event

Thread SetField Event

Destroy Event

Thread Start Event

Thread Interrupt Event

Static Event Analysis Approach

• HTR: Thread Start Event ∧ Thread SetField Event
• Which method has the destruction semantics?

• INR: Thread Start Event ∧ Thread Interrupt Event
∧ ¬(∃ Interrupted Check Event)

• NTT: Destroy Event happens before Thread Interrupt Event

• How to be compatible with Runnable (java.lang.Runable)?

Identify Method with Destruction Semantics

• Filter1: filter out candidate(s)
• Whose name contains “destroy” or
• Whose name equals “close” or
• Which is modified by the annotation “@PreDestroy”

• Filter2: keep the method with the destroy operation statement(s)
• Assigns its field with the value null: this.f = null;
• Invokes the “destroy” method of its field: this.f.destroy();
• Contains JNI invocation.

Identify Method with Destruction Semantics
//Candidate 1
java.io. ByteArrayInputStream
public void close() throws IOException {
}

//Candidate 2
java.io. FileOutputStream
public void close() throws IOException {

…
FileChannel fc = this.channel;

if (fc != null) {
fc.close();}

}

Filter2 //Candidate 2

this.channel.close()

Compatible with Runnable

• Construct a virtual alias relationship between a thread t and its
real task: Runnable r

void main(…){
Runnable r = …;
t = new Thread(r);
t.start();

}

r

t

Virtual Alias

• Event of t ⇔ Event of r
• Start Event
• Interrupt Event
• Interrupted Check Event
• …

Evaluation

• Developed a tool named Leopard based on FlowDroid.
• Dataset: 9 large Java Programs and 147 Android apps.
• RQ1: Can Leopard find the thread related misuses in Java

programs and Android apps?
• RQ2: How efficient is Leopard against the existing approach?
• RQ3: Do developers take the misuse as a serious problem?

Detection Ability of Leopard

M(N) = #Miuses (#Apps)

in Java Programs
220 Misuses

723 Misuses in
103 Apps

Leopard VS AsyncChecker on Apps
Misuses detected by AsyncChecker increase by only a few

(42 to 47) as time goes up from 5 minutes to 30 minutes

AsyncChecker has found 47 misuses in 15 apps
Leopard has found 723 misuses in 103 apps while
Average Time: 60s Max Time: 402s

Leopard VS AsyncChecker on Apps

• Manually Check 78 misuses in 15 Apps for Precision, Recall and F1
• Where AsyncChecker can found misuses

 Recall and 𝐹𝐹1 value of Leopard are
outperform

 With only a little decrease in Precision

Precision Recall F1
AsyncChecker: 100%, 53.8%, 0.700
Leopard : 98.7%, 96.1%, 0.974

Confirmed Issues from Developers

 Confirmed: 66
 *Fixed: 21

Detection of Java Basic Thread Misuses Based on Static Event Analysis

Email: cuibq@ios.ac.cn
Institute of Software, Chinese Academy of Sciences (ISCAS)

University of Chinese Academy of Sciences (UCAS)

ASE 2023 Presented by Baoquan Cui (崔保全) Sep 13

Question?

• HardToRelease (HTR) | Interrupt NoResponding (INR) | …
• Destruction Semantic Method Identification
• Compatible with Runnable

static void entry(…){
Runnable r = …;
t = new T(r);
t.start(); }

class T extends Thread{
T(Runnable r){ super(r); }
void run(){ doTask(); }
void doTask(){

c = Thread.currentThread();
…

}
}

r

t

…

T.this

c

…
1
2
3
4
5
6
7
8
9
10
11
12

Backward alias analysis

Figure 4: Event Coverage. Async-E means the number of events covered during detection of AsyncChecker. Async-
E-D and Leopard-E-D mean the number of events covered during detection of AsyncChecker and Leopard after
deduplication, respectively. The second vertical axis on the right in the subfigure (3) is for Async-E only

Evaluation- Event Coverage

Algorithm (HTR)

Algorithm (INR)

Algorithm (NTT)

	幻灯片编号 1
	Typical Error-prone Example of Thread (1)
	Typical Error-prone Example of Thread (2)
	A Real Execution of Program with INR
	Related works and approaches
	Overview of Static Event Analysis Approach
	Static Event Analysis Approach
	Static Event Analysis Approach
	Identify Method with Destruction Semantics
	Identify Method with Destruction Semantics
	Compatible with Runnable
	Evaluation
	Detection Ability of Leopard
	Leopard VS AsyncChecker on Apps
	Leopard VS AsyncChecker on Apps
	Confirmed Issues from Developers
	幻灯片编号 18
	Backward alias analysis
	Evaluation- Event Coverage
	Algorithm (HTR)
	Algorithm (INR)
	Algorithm (NTT)

