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Typical Error-prone Example of Thread (1)
class Destructible {

// resource release
void destroy(){…}

}

class T extends Thread{
Destructible  d;
void set(Destructible d){ this. d = d}
void run(){…}     }

void main(…){//start the thread and try to destroy the object d
T t = new T(); 
Destructible d = new Destructible(); 
t.set(d);
t.start();
d.destroy();

}

• An object d may destroy itself

• But active thread t will block the release of the object d
• As the thread t has a strong reference of its field d

• A memory leak happens (until the thread finishes)
• Called Hard To Release (HTR) in this paper



Typical Error-prone Example of Thread (2)

• The interruption will lose response
• As a running thread will only set the interrupted status.

• The thread will continue executing. (Unnecessary processor usage and 
time wasting) 

• Called Interrupt NoResponding (INR) in this paper

class T extends Thread{
void run(){

int i = 0；
while(i<1000000){

// task
}

}
}

// start the thread and try to interrupt it 
void main(…){

Thread t = new T();
t.start();
…
t.interrupt();

}



A Real Execution of Program with INR
// start the thread and interrupt it immediately 
// task: print number

//output

• The interruption has no response
• Unless the following statement is added

• if(isInterrupted()){break;}



Related works and approaches

• AsyncChecker [1]
• For AsyncTask (android.os.AsyncTask )

• Deprecated in Android API level 30 
• Destructible classes: Activity and View

• Path-sensitive approach
• Time consuming

• Other works
• Focus on the data race in Java/Android concurrent programs

[1]Pan et al. Static asynchronous component misuse detection for Android applications. ESEC/SIGSOFT FSE 2020
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Overview of Static Event Analysis Approach



Static Event Analysis Approach

void main(…){
T t = new T(); 
Destructible d = new Destructible(); 
t.set(d);
t.start();
d.destroy();
t.interrupt();

}

class T extends Thread{
void run(){

if(isInterrupted()){break;}
}     

}

Interrupted Check Event

Thread SetField Event

Destroy Event

Thread Start Event

Thread Interrupt Event



Static Event Analysis Approach

• HTR:  Thread Start Event  ∧ Thread SetField Event
• Which method has the destruction semantics?

• INR: Thread Start Event ∧ Thread Interrupt Event
∧ ¬(∃ Interrupted Check Event)

• NTT: Destroy Event happens before Thread Interrupt Event

• How to be compatible with Runnable (java.lang.Runable)?



Identify Method with Destruction Semantics

• Filter1: filter out candidate(s)
• Whose name  contains “destroy” or
• Whose name equals “close”   or
• Which is modified by the annotation “@PreDestroy”

• Filter2: keep the method with the destroy operation statement(s)
• Assigns its field with the value null:  this.f = null;
• Invokes the “destroy” method of its field:  this.f.destroy();
• Contains JNI invocation.



Identify Method with Destruction Semantics
//Candidate 1
java.io. ByteArrayInputStream
public void close() throws IOException {
}

//Candidate 2
java.io. FileOutputStream
public void close() throws IOException {

…
FileChannel fc = this.channel;

if (fc != null) {
fc.close();}

}

Filter2 //Candidate 2

this.channel.close()



Compatible with Runnable

• Construct a virtual alias relationship between a thread t and its 
real task: Runnable r

void main(…){
Runnable r = …;
t = new Thread(r); 
t.start();

} 

r

t

Virtual Alias

• Event of t ⇔ Event of r
• Start Event 
• Interrupt Event 
• Interrupted Check Event 
• …



Evaluation

• Developed a tool named Leopard based on FlowDroid.
• Dataset: 9 large Java Programs and 147 Android apps.
• RQ1: Can Leopard find the thread related misuses in Java 

programs and Android apps?
• RQ2: How efficient is Leopard against the existing approach?
• RQ3: Do developers take the misuse as a serious problem?



Detection Ability of Leopard

M(N) = #Miuses (#Apps)

in Java Programs
220 Misuses

723 Misuses in 
103 Apps



Leopard VS AsyncChecker on Apps
Misuses detected by AsyncChecker increase by only a few 

(42 to 47) as time goes up from 5 minutes to 30 minutes

AsyncChecker has found   47 misuses in   15 apps
Leopard            has found 723 misuses in 103 apps while
Average Time: 60s              Max Time: 402s



Leopard VS AsyncChecker on Apps

• Manually Check 78 misuses in 15 Apps for Precision, Recall and F1
• Where AsyncChecker can found misuses

 Recall and 𝐹𝐹1 value of Leopard are 
outperform 

 With only a little decrease in Precision

Precision    Recall         F1 
AsyncChecker:       100%,       53.8%,      0.700
Leopard : 98.7%,      96.1%,      0.974



Confirmed Issues from Developers

 Confirmed: 66
 *Fixed:        21
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Question?

• HardToRelease (HTR) | Interrupt NoResponding (INR) | …
• Destruction Semantic Method Identification 
• Compatible with Runnable



static void entry(…){ 
Runnable r = …;
t = new T(r); 
t.start(); }

class T extends Thread{
T(Runnable r){ super(r); }
void run(){ doTask(); }
void doTask(){

c = Thread.currentThread();
…

}
}
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Backward alias analysis



Figure 4: Event Coverage. Async-E means the number of events covered during detection of AsyncChecker. Async-
E-D and Leopard-E-D mean the number of events covered during detection of AsyncChecker and Leopard after 
deduplication, respectively. The second vertical axis on the right in the subfigure (3) is for Async-E only

Evaluation- Event Coverage



Algorithm ( HTR)



Algorithm ( INR)



Algorithm ( NTT)
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