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mems



mems=memory access



The mems Metric

Algorithmic Complexity Analysis: practically using Knuth's Ordir
Operations (oops) and Memory Operations (mems) method
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o (The Art of Computer Programming)
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can be followed by 4397028651 before we get stuck again.
In Section 7.2.3, we'll study ways to estimate the behavior of such searches,
without actually performing them. Such estimates tell us in this case that
the Paige-Tompkins method essentially traverses an implicit search tree that
contains about 2.5 x 10'® nodes. Most of those nodes belong to only a few levels
of the tree; more than half of them deal with choices on the right half of the
sixth row of M, after about 50 of the 90 blanks have been tentatively filled in.
A typical node of the search tree probably requires about 75 me mem
acc for processing, to check validity. Therefore the total running time on a
modern computer would be roughly the time needed to perform 2 x 10%° me
Parker, on the other hand, went back to the method that Euler had originally
used to search for orthogonal mates in 1779. First he found all of the so-called
transversals of L, namely all ways to choose some of its elements so that there's
exactly one element in each row, one in each column, and one of each value. For
example, one transversal is 0859734216, in Euler’s notation, meaning that we
choose the 0 in column 0, the 8 in column 1, ..., the 6 in column 9. Each transver-
sal that includes the k in L’s leftmost column represents a legitimate way to place
the ten k’s into square M. The task of finding transversals is, in fact, rather

easy, and the given matrix L turns out to have exactly 808 of them; there are
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Path sensitive mems measurement

e Reg vs Cache vs RAM—— mems = RAM access
e Array access = RAM access => mems = array access
e Example:
e Counting memory read/write operations (e.g., array accesses)
o, arr[i] = i+2;
oo, arr[i+1] = arr[i];

e Path-sensitive analysis:

>, (0; * pind,;)
5.0
e Computing mems per execution path and aggregate via weighted averages

Performance



Background

e Most methods require actually running the program to measure time
e Traditional runtime profiling is platform-dependent and expensive.

e Theoretical complexity # practical performance:

e hidden constants and hardware variations.
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Motivating Example

e Same size(n), same path lengths, but different mems

void test(int n, int mode) {
intarr[n],a=0,b =0;
for(inti =0;i < n;i++){
if(mode > 0) {
arr[i] =1* 2 + arr[i];
mode = mode - 1;

} else {
b=i*3+b;
mode = mode - 1;

}

}
}



Motivating Example

e Same size(n), same path lengths, but different mems

void test(int n, int mode) {
intarr[n],a=0,b=0;
for(inti =0;i < n;i++){
if(mode > 0) {
arr{if =1* 2 + arrli];
mode = mode - 1;

True Branch: mems+=2

} else {
b=1%3+D; | )
mode = mode - 1: False Branch: mems+=0
}

}
}



Motivating Example

e Same size, same path lengths, but different mems

TAEBLE 1
REANED RESULTS: EXECUTION AND VALGRIND TIME ON
UNINSTRUMENTED PROGRAMS
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Motivating Example

e Same size, same path lengths, but different mems

void test(int n, int mode) {
int arr[n],a=0,b =0;
for(inti=0;i < n;i++){
if(mode > 0) {
arr[i] =1* 2 + arr[i];
mode = mode - 1;
} else {
b=i*3+b;
mode = mode - 1;

same path lengths
large mems value
longer time

TAEBLE 1
REANED RESULTS: EXECUTION AND VALGRIND TIME ON

UNINSTRUMENTED PROGRAMS
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Experiments

e RQ1:

e For different paths in the same program, does mems always correlate with

execution time?
e RQ2:

e Across different programs and different paths, does mems still correlate with
execution time?



Approach

e AST Instrumentation:

e counting mems
Listung 1. Simplified instrumented version with original code highlighted

e printing paths and execution time LARGE INTEGER freq, start, end;

1
2 QueryPerformanceFrequency (&freq);
3 QueryPerformanceCounter (&start) ;
4 1int a =0, b = 0, i;

s for (1 = 0; 1 < n; i++) {

6 path_len = path_len + 1;

7 if _(mode > 0) {

8 path_len = path_len + 1;

. —_ 9 arrlil = 1 x /2 + arrlil;
red: original program , P ————
black:inserted code mode = mode - I;

12 } else {

13 path_len = path_len + 1;
14 b=31 % 3 + b;

15 mode = mode 1;

16 }

17 }

18 printf("Total path length: %d\n", path_len);

19 printf("Total memory accesses: %d\n", mems);

20 QueryPerformanceCounter (&end) ;

21 double time taken = (double) (end.QuadPart -
start .QuadPart) / freqg.QuadPart;

2 printf("Execution time: %$f\n", time_taken);




Results

e RQ1:
e In the same program, does mems correlate with execution time? @
TABLE II

CORRELATION COEFFICIENTS BETWEEN MEMORY USAGE AND
EXECUTION TIME

Program | Correlation Coefficient | Interpretation
Array 0.99980 Very strong
Bubble 0.99980 Very strong
Insertsort 0.99996 Very strong
Sieve 0.99986 Very strong
Topo 0.99900 Very strong




Results

e RQ2:

?

e Across different programs, does mems correlate with execution time -

TABLE ITI
SELECTED EXPERIMENTAL RESULTS ON SERVER
Program n | Path Len.| mems | Time (ms)
large mems value [Goobie | 100 9,999 19,800 1.857
longer time change | 100 10,106 14 1.473
shell 1.000 12,715 18,800 2.743
sieve |5.000 13,175 13.089 1.267
array |5.000 15,002 20,000 1.479
FFT 2.048 18,397 | 118,592 7.134




Results

e RQ2:
?

e Across different programs, does mems correlate with execution time -

TAEBLE 111
SELECTED EXPERIMENTAL RESULTS ON SERVER
Program n | Path Len.| mems | Time (ms)
large mems value [Goobie | 100 9999 19,800 1.857
longer time change | 100 10,106 14 1.473
shell | 1,000 12,715] 18,800 2.743 large mems value
sieve |5,000 13,175 13.089 1.267 shorter time
array |5.000 15,002 20,000 1.479
FFT 2.048 18,397 | 118,592 7.134




Results

e RQ2:

?

e Across different programs, does mems correlate with execution time -

e ——> Different programs, different structures (n, path lengths, number of conditional
branches...)

e ——> n also correlate with execution time



Enhanced Validation

e Regression Models:

e Log-log regression shows mems explains 41% of execution time variance globally.

e Intra-program regression coefficients: § = 1.0 (e.g., bubble, insertsort)

Global Regression: log(mems) vs. log(exe time)

—4} Data
TABLE VII —

PER-PROGRAM LOG-LOG REGRESSION OF MEMS VS. EXECUTION TIME. —6f
Program | Coef | 95% CI Low | 95% CI High R* N E —gl
bubble 0.98 0.96 1.00 0.9996 | o Y
insertsort | 0,96 0.93 0.99 0.9988 9_| % -10}
selectsort | 1.87 1.77 1.97 09970 | 8 B
shellsort 0.94 0.87 1.00 0.9949 | 8§ -12
array (.95 0.91 0.99 0.9946 | 18

-14t,

2 4 6 8 10 12 14 16 18
log(mems)
Figure 7. Global log-log regression between mems and exe-

cution time. The shaded region represents the 95% confidence
interval for the fitted model.



Conclusion & Future Work

e Conclusion:

e mems is reliable for intra-program path comparison but insufficient for cross-
program prediction.

e Comparing different programs needs more issues (or in some special cases)

e Future Directions:

e Combining mems with path length, arithmetic intensity, or cache models.
e Extending to larger codebases and real-world applications.
e Our tool: Eppather

e A static testcase generation tool about mems



Background

mems: memory access
metric (Knuth)

Existing metrics rely on
runtime/hardware

Can mems predict
computational cost stically?

Method

Count mems statically in
code

Compare with execution
time

Analyze correlation with
examples & regression

Experiment

Single program: mems T
— time T (linear)

Across programs:
correlation strong, some
exceptions

Conclusion

mems is effective for
path-level analysis

Cross-program use needs
more research

Q&A

Thanks for listening

zhanglw@ios.ac.cn
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