
An Empirical Study:
mems as a Static

Performance Metric
Liwei Zhang , Baoquan Cui, Xutong Ma, Jian Zhang

QRS 2025, Hangzhou

mems=？

mems=memory access

The mems Metric
● 《The Art of Computer Programming》

Path sensitive mems measurement
● Reg vs Cache vs RAM—— mems ≈ RAM access

● Array access ≈ RAM access => mems ≈ array access

● Example:

● Counting memory read/write operations (e.g., array accesses)

o, arr[i] = i+2;

oo, arr[i+1] = arr[i];

● Path-sensitive analysis:

● Computing mems per execution path and aggregate via weighted averages

Background
● Most methods require actually running the program to measure time

● Traditional runtime profil ing is platform-dependent and expensive.

● Theoretical complexity ≠ practical performance:

● hidden constants and hardware variat ions.

Background

——>mems

● Most methods require actually running the program to measure time

● Traditional runtime profil ing is platform-dependent and expensive.

● Theoretical complexity ≠ practical performance:

● hidden constants and hardware variations.

Motivating Example
● Same size(n), same path lengths, but different mems

void test(int n, int mode) {
int arr[n], a = 0, b = 0;
for(int i = 0; i < n; i++) {

if(mode > 0) {
arr[i] = i * 2 + arr[i];
mode = mode - 1;

} else {
b = i * 3 + b;
mode = mode - 1;

}
}

}

Motivating Example
● Same size(n), same path lengths, but different mems

True Branch: mems+=2

False Branch: mems+=0

void test(int n, int mode) {
int arr[n], a = 0, b = 0;
for(int i = 0; i < n; i++) {

if(mode > 0) {
arr[i] = i * 2 + arr[i];
mode = mode - 1;

} else {
b = i * 3 + b;
mode = mode - 1;

}
}

}

Motivating Example
● Same size, same path lengths, but different mems

void test(int n, int mode) {
int arr[n], a = 0, b = 0;
for(int i = 0; i < n; i++) {

if(mode > 0) {
arr[i] = i * 2 + arr[i];
mode = mode - 1;

} else {
b = i * 3 + b;
mode = mode - 1;

}
}

}

Motivating Example
● Same size, same path lengths, but different mems

same path lengths
large mems value

longer time

void test(int n, int mode) {
int arr[n], a = 0, b = 0;
for(int i = 0; i < n; i++) {

if(mode > 0) {
arr[i] = i * 2 + arr[i];
mode = mode - 1;

} else {
b = i * 3 + b;
mode = mode - 1;

}
}

}

Experiments
● RQ1:

● For different paths in the same program, does mems always correlate with

execution t ime?

● RQ2:

● Across different programs and different paths, does mems sti l l correlate with
execution t ime?

Approach
● AST Instrumentation:

● counting mems

● print ing paths and execution t ime

red: original program
black:inserted code

Results
● RQ1:

● In the same program, does mems correlate with execution time?

Results
● RQ2:

● Across different programs, does mems correlate with execution time

large mems value
longer time

?

Results
● RQ2:

● Across different programs, does mems correlate with execution time

large mems value
shorter time

large mems value
longer time

?

Results
● RQ2:

● Across different programs, does mems correlate with execution time
● ——> Different programs, di fferent structures (n, path lengths, number of condit ional

branches.. .)

● ——> n also correlate with execution t ime

?

Enhanced Validation
● Regression Models:

● Log- log regression shows mems explains 41% of execution t ime variance globally.

● Intra-program regression coeff icients: β ≈ 1.0 (e.g., bubble, insertsort)

Conclusion & Future Work
● Conclusion :

● mems is rel iable for intra-program path comparison but insuff icient for cross-
program predict ion.

● Comparing different programs needs more issues (or in some special cases)

● Future Directions :

● Combining mems with path length, arithmetic intensity, or cache models.

● Extending to larger codebases and real-world applications.

● Our tool: Eppather

● A static testcase generation tool about mems

Q&A
Thanks for l istening

zhanglw@ios.ac.cn

	An Empirical Study: �mems as a Static Performance Metric
	mems=？
	mems=memory access
	The mems Metric
	Path sensitive mems measurement
	Background
	Background
	Motivating Example
	Motivating Example
	Motivating Example
	Motivating Example
	Experiments
	Approach
	Results
	Results
	Results
	Results
	Enhanced Validation
	Conclusion & Future Work
	Q&A

