An Empirical Study:
mems as a Static
Performance Metric

Liwei Zhang, Baoquan Cui, Xutong Ma, Jian Zhang
o _f_»

ISCAS lveia -

QRS 2025, Hangzhou

mems

mems=memory access

The mems Metric

Algorithmic Complexity Analysis: practically using Knuth's Ordir
Operations (oops) and Memory Operations (mems) method

srara B

o (The Art of Computer Programming)

e ————

can be followed by 4397028651 before we get stuck again.
In Section 7.2.3, we'll study ways to estimate the behavior of such searches,
without actually performing them. Such estimates tell us in this case that
the Paige-Tompkins method essentially traverses an implicit search tree that
contains about 2.5 x 10'® nodes. Most of those nodes belong to only a few levels
of the tree; more than half of them deal with choices on the right half of the
sixth row of M, after about 50 of the 90 blanks have been tentatively filled in.
A typical node of the search tree probably requires about 75 me mem
acc for processing, to check validity. Therefore the total running time on a
modern computer would be roughly the time needed to perform 2 x 10%° me
Parker, on the other hand, went back to the method that Euler had originally
used to search for orthogonal mates in 1779. First he found all of the so-called
transversals of L, namely all ways to choose some of its elements so that there's
exactly one element in each row, one in each column, and one of each value. For
example, one transversal is 0859734216, in Euler’s notation, meaning that we
choose the 0 in column 0, the 8 in column 1, ..., the 6 in column 9. Each transver-
sal that includes the k in L’s leftmost column represents a legitimate way to place
the ten k’s into square M. The task of finding transversals is, in fact, rather

easy, and the given matrix L turns out to have exactly 808 of them; there are
resnectivelv (79 9A. 7. R7. TN_R4_R2 75 95 AR tranaveraals far b = N 1 ah

=, overflow 38

OverflowAl is your company s

new Al-powered sidekick i

In inplemenling imast dgonthivg (sorl, seanch, graph tavenal &c) thens B requently & rade-all

that can be made in reducing memcny socesses at the cost of sdditional cedinary operalions

Knigth Fas 3 uselul medhed for comrganng the complexty of varicus dgorithm implemsiations. by
snstracting it from pamicuar processors and only distinguishing Detveen ordinary operations
{0aps) andd memony operations {mens).

In compsled programs, ore hepically lets the compller ongantse the low level cperations, and hopes
that the operating system vill handle the question of whether data is beid i cache memaony
{lasten) oF & virlual memory (Sloner), Futhenmore, The exsct frumbes § oot of irtlruclions 5

encapsulsted by the compier

With Forth, shere is ne longer such encapsulation, and ane 5 makch closer 10 the machine, albeit
peThags b & shack Mmacking aning on b ol 3 register processod

tgnoring the effect of an operaling system (30 no memory stalls, ec), and assuming for the
moment 3 simple proCessoe

(1} Can anyome sdvise on how the ordinary stack operations in Forth (e.g. dup, rot, over,
swap, ebe.) compare with the cost of Forth’s memaory access fetch (@) or store (13 7

(2} 15 there a rube of thumb | can e to decide how many ordinary opsrations to trade-off
Hgainit saving a memory sicess?

What Fm deoking fov S somelising like memony acoes codls o mech o 50 erdinary &t or S00
ardinary ops, oF 5 oroinary ops' Balipark (s atsolutely fine.

I'en frying o mef @ sende of the rebalive expense of felch ond Slone ve nof, Twan, oo, oY, o

aorret i ok erder of mogide,

pericemance slgarihm Theary compeRation-Thesry ol

Path sensitive mems measurement

e Reg vs Cache vs RAM—— mems = RAM access
e Array access = RAM access => mems = array access
e Example:
e Counting memory read/write operations (e.g., array accesses)
o, arr[i] = i+2;
oo, arr[i+1] = arr[i];

e Path-sensitive analysis:

>, (0; * pind,;)
5.0
e Computing mems per execution path and aggregate via weighted averages

Performance

Background

e Most methods require actually running the program to measure time
e Traditional runtime profiling is platform-dependent and expensive.

e Theoretical complexity # practical performance:

e hidden constants and hardware variations.

Background

e Most methods require actually running the program to measure time
e Traditional runtime profiling is platform-dependent and expensive.

e Theoretical complexity # practical performance:

e hidden constants and hardware variations.

——>mems

Motivating Example

e Same size(n), same path lengths, but different mems

void test(int n, int mode) {
intarr[n],a=0,b =0;
for(inti =0;i < n;i++){
if(mode > 0) {
arr[i] =1* 2 + arr[i];
mode = mode - 1;

} else {
b=i*3+b;
mode = mode - 1;

}

}
}

Motivating Example

e Same size(n), same path lengths, but different mems

void test(int n, int mode) {
intarr[n],a=0,b=0;
for(inti =0;i < n;i++){
if(mode > 0) {
arr{if =1* 2 + arrli];
mode = mode - 1;

True Branch: mems+=2

} else {
b=1%3+D; |)
mode = mode - 1: False Branch: mems+=0
}

}
}

Motivating Example

e Same size, same path lengths, but different mems

TAEBLE 1
REANED RESULTS: EXECUTION AND VALGRIND TIME ON
UNINSTRUMENTED PROGRAMS

void test(int n, int mode) {

. P P fiike ken| mems|Lyims) | v {ms)
int arr[n],a=0,b =0; 100 O pah_6| 200 D[0.068| 8488
for(int i — Oo i < n: i++) { :ﬁ |£ E:hh_; ﬁ ﬂ g'x.! ?;23 Effect of mems on Execution Time (Va!grind) for Different Path Lengths
- I I | Ll . o085 =
. SO0 0] path_9 1.0 O] 0241 12818 -
if(mode > 0) { 500 path_10| 1000] 500 0.178] 12289 e 3

-]
a
i
[l
1

1

250
1= * - S00| S00|path_11| 1000| 1.000| 0.187| 12.399
arr[l] =1%2+ arr[l]' 10,000 ﬂ'Paulpa[h 30| 20,000 0| oot 5720 PG W DS T

E
= -1 10000 2 path_31) 200000 25000 0,092 5555 = . = :
mOde mOde 1 ! 10,000] 5.000|path_32] 200000) 5.000| 0.089) 5838 g 00253 s
} else { 10,000| 7.500|path_33| 20000 7.500| 0116 5718 L N SO et
- 10,000] 10.000|path_34] 200000) 10.000| 0.128] 5538 £
b=i*3+ b; 50,000 0| path_35| 100,000 0| 0362 ROIS deie
] 50000 12500|path_ 36| 100,000] 12500| 0418 9257 X
mode = mode - 1; 50.000| 25.000|path_37(100.000| 25000 0546 8718 g -
} 50.000| 37.500|path_38| 100,000] 37.500| 0630 9.018 - e R TTE
S0.000| S00000| path_39] 100000 50,000) 0639 BEM menrs
} 100,000 0| path_40| 200,000 0| 0.720) 9.824 _))
100.000| 25 .000|path_41| 200,000 25000 0.857| 10.585 Figure 1. Graphical representation of memory access fre-
} NN | SO0, _AZ| 200,000 S0,000(1.051) 11500 quency and execution time correlation.

IO 75.000| path_43 | 3000000) 75000(1201 12427
OO0 | 100,000 | path_44 | 2000000) 100,000(1361 14158
R LITLLL (| path_45 | 400,000 0 1319 15259
200000| 500000 path_46| 4000000) 50,000(1662 16.742
00 0000 | 100000 | paath_47 | S00000) 100,000 2077 18213
200,000| 150,000 | path_48 | 00,0000 150,000(2467 19587
00000 | 200000 | path_49 | 4000000) 200,000 2544 21368

Motivating Example

e Same size, same path lengths, but different mems

void test(int n, int mode) {
int arr[n],a=0,b =0;
for(inti=0;i < n;i++){
if(mode > 0) {
arr[i] =1* 2 + arr[i];
mode = mode - 1;
} else {
b=i*3+b;
mode = mode - 1;

same path lengths
large mems value
longer time

TAEBLE 1
REANED RESULTS: EXECUTION AND VALGRIND TIME ON

UNINSTRUMENTED PROGRAMS

P1 P file len| mems | Ly(ms) | v (ms)
L1} 0| path_6 200 O 068 24EE
(L1 50| path_7 201 100| 061 3189
L1} 100 path_8 200 0| 0052 7.762
SO0 0] path_9 1.0 O] 0241 12818
S0 0| path_10] 1,000 500(OIT7E[12289
S0 SN0 path_11 OO 10 U187 12399
10 Ood 0| path_30| 0000 O 0079 5729
10000 2500|path_31] 200000| 2500) (L0692 5.555
100000 S5.000|pah 32| 300000| 5000 (L0 5838
100000 7500 path_33| 200000) 7500 0116 5TIR
10.000] 10.000] path_34| 20000 10,000] (0.128 5538
S0 0] paath_35] 10,000 0] 03a2 2.015
50.000| 12500|path 36| 100000| 12500 0418 09257
S00000) 25,000 | path_37] 100,000| 25,000] 0546 8TIR
50.000| 37.500|path_ 38| 100.000| 37.500) (.630 9.018
S0.000| S0.000|path_39] 100,000 S0.000] (L639 3.824
(LT (0] paath_ 40| 200,000 O 0720 0824
T00000| 25,000| path_41 | 2000000) 250000 0857 10.585
100 000| S0,000 A2 20000000 5000000 1051 11500
IO 75.000| path_43 | 3000000) 75000(1201 12427
path 4412000000100 000 1261 14158
pathy_45 | SO0, 000 0] 1319 15259
path_46| 4000000 50,000) 1662 16.742
path_47 | 400.000| 100,000) 2077 18213
path_48 | 400.000(150,000] 2467 19587
path_49)| J00000] 200,00] 2544 21368

Walgrind Fxecution Time {ms|

d.025

0.040

2035

4.040

0.025

a.0z2a

o
it

4.010

0.0035

Figure 1.
quency and execution time correlation.

Effect of mems on Execution Time (Vaigrind) for Different Path Lengths

J—

100000 300000

op

Graphical representation of memory access fre-

Experiments

e RQ1:

e For different paths in the same program, does mems always correlate with

execution time?
e RQ2:

e Across different programs and different paths, does mems still correlate with
execution time?

Approach

e AST Instrumentation:

e counting mems
Listung 1. Simplified instrumented version with original code highlighted

e printing paths and execution time LARGE INTEGER freq, start, end;

1
2 QueryPerformanceFrequency (&freq);
3 QueryPerformanceCounter (&start) ;
4 1int a =0, b = 0, i;

s for (1 = 0; 1 < n; i++) {

6 path_len = path_len + 1;

7 if _(mode > 0) {

8 path_len = path_len + 1;

. —_ 9 arrlil = 1 x /2 + arrlil;
red: original program , P ————
black:inserted code mode = mode - I;

12 } else {

13 path_len = path_len + 1;
14 b=31 % 3 + b;

15 mode = mode 1;

16 }

17 }

18 printf("Total path length: %d\n", path_len);

19 printf("Total memory accesses: %d\n", mems);

20 QueryPerformanceCounter (&end) ;

21 double time taken = (double) (end.QuadPart -
start .QuadPart) / freqg.QuadPart;

2 printf("Execution time: %$f\n", time_taken);

Results

e RQ1:
e In the same program, does mems correlate with execution time? @
TABLE II

CORRELATION COEFFICIENTS BETWEEN MEMORY USAGE AND
EXECUTION TIME

Program | Correlation Coefficient | Interpretation
Array 0.99980 Very strong
Bubble 0.99980 Very strong
Insertsort 0.99996 Very strong
Sieve 0.99986 Very strong
Topo 0.99900 Very strong

Results

e RQ2:

?

e Across different programs, does mems correlate with execution time -

TABLE ITI
SELECTED EXPERIMENTAL RESULTS ON SERVER
Program n | Path Len.| mems | Time (ms)
large mems value [Goobie | 100 9,999 19,800 1.857
longer time change | 100 10,106 14 1.473
shell 1.000 12,715 18,800 2.743
sieve |5.000 13,175 13.089 1.267
array |5.000 15,002 20,000 1.479
FFT 2.048 18,397 | 118,592 7.134

Results

e RQ2:
?

e Across different programs, does mems correlate with execution time -

TAEBLE 111
SELECTED EXPERIMENTAL RESULTS ON SERVER
Program n | Path Len.| mems | Time (ms)
large mems value [Goobie | 100 9999 19,800 1.857
longer time change | 100 10,106 14 1.473
shell | 1,000 12,715] 18,800 2.743 large mems value
sieve |5,000 13,175 13.089 1.267 shorter time
array |5.000 15,002 20,000 1.479
FFT 2.048 18,397 | 118,592 7.134

Results

e RQ2:

?

e Across different programs, does mems correlate with execution time -

e ——> Different programs, different structures (n, path lengths, number of conditional
branches...)

e ——> n also correlate with execution time

Enhanced Validation

e Regression Models:

e Log-log regression shows mems explains 41% of execution time variance globally.

e Intra-program regression coefficients: § = 1.0 (e.g., bubble, insertsort)

Global Regression: log(mems) vs. log(exe time)

—4} Data
TABLE VII —

PER-PROGRAM LOG-LOG REGRESSION OF MEMS VS. EXECUTION TIME. —6f
Program | Coef | 95% CI Low | 95% CI High R* N E —gl
bubble 0.98 0.96 1.00 0.9996 | o Y
insertsort | 0,96 0.93 0.99 0.9988 9_| % -10}
selectsort | 1.87 1.77 1.97 09970 | 8 B
shellsort 0.94 0.87 1.00 0.9949 | 8§ -12
array (.95 0.91 0.99 0.9946 | 18

-14t,

2 4 6 8 10 12 14 16 18
log(mems)
Figure 7. Global log-log regression between mems and exe-

cution time. The shaded region represents the 95% confidence
interval for the fitted model.

Conclusion & Future Work

e Conclusion:

e mems is reliable for intra-program path comparison but insufficient for cross-
program prediction.

e Comparing different programs needs more issues (or in some special cases)

e Future Directions:

e Combining mems with path length, arithmetic intensity, or cache models.
e Extending to larger codebases and real-world applications.
e Our tool: Eppather

e A static testcase generation tool about mems

Background

mems: memory access
metric (Knuth)

Existing metrics rely on
runtime/hardware

Can mems predict
computational cost stically?

Method

Count mems statically in
code

Compare with execution
time

Analyze correlation with
examples & regression

Experiment

Single program: mems T
— time T (linear)

Across programs:
correlation strong, some
exceptions

Conclusion

mems is effective for
path-level analysis

Cross-program use needs
more research

Q&A

Thanks for listening

zhanglw@ios.ac.cn

	An Empirical Study: �mems as a Static Performance Metric
	mems=？
	mems=memory access
	The mems Metric
	Path sensitive mems measurement
	Background
	Background
	Motivating Example
	Motivating Example
	Motivating Example
	Motivating Example
	Experiments
	Approach
	Results
	Results
	Results
	Results
	Enhanced Validation
	Conclusion & Future Work
	Q&A

