
Detection of Java Basic Thread Misuses Based on
Static Event Analysis

Baoquan Cui1,3, Miaomiao Wang2,3 Chi Zhang1,3, Jiwei Yan2†, Jun Yan1,2,3† and Jian Zhang1,3

1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
2 Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, Beijing, China

3 University of Chinese Academy of Sciences, Beijing, China

Email: {cuibq, zhangchi, yanjun, zj}@ios.ac.cn, {wangmiaomiao20, yanjiwei}@otcaix.iscas.ac.cn

Abstract—The fundamental asynchronous thread (java.la
-ng.Thread) in Java can be easily misused, due to the lack
of deep understanding for garbage collection and thread inter-
ruption mechanism. For example, a careless implementation of
asynchronous thread may cause no response to the interrupt
mechanism in time, resulting in unexpected thread-related be-
haviors, especially resource leak/waste.

Currently, few works aim at these misuses and related works
adopt either the dynamic approach which lacks effective inputs
or the static path-sensitive approach with high time consumption
due to the path explosion, causing false negatives. We have found
that the behavior of threads and the interaction between threads
and its referencing objects can be abstracted. In this paper, we
propose an event analysis approach to detect the defects in Java
programs and Android apps, which focuses on the existence or
the order of the events to reduce the false negatives. We extract
the misuse-related events, containing the thread events and the
destroy events of the object referenced by the thread. Then
we analyze the events with loop identification, happens-before
relationship construction and alias determination. Finally, we
implement an automatic tool named Leopard and evaluate it on
real world Java programs and Android apps. Experiments show
that it is efficient when comparing with the existing approach
(misuse: 723 vs 47, time: 60s vs 30min), which also outperforms
the existing work in precision. The manual check indicates that
Leopard is more efficient and effective than existing work.
Besides, 66 issues reported by us have been confirmed and 21 of
them have been fixed by developers.

Index Terms—Thread Misuse, Basic Thread, Runnable, Static
Analysis, Java Program

I. INTRODUCTION

The latest ranking shows that Java remains one of the

most popular programming languages [1]. The classes, class

java.lang.Thread and its interface, java.lang.Runnable, are the

most basic units of the asynchronous task in Java, and they are

commonly used especially in multi-threaded programming and

thread pool usage, which we call the basic thread in this paper.

Existing researches about thread misuse analysis and detection

are based on some asynchronous components in Android with

Android platform features [2–7]. And others focus on data

races [8–16] , especially on the Android platform [17–24].

They adopt either the dynamic approach which lacks effective

inputs or the static path-sensitive approach with high time

†Corresponding Authors.

consumption due to the path explosion. Besides, as Android

versions are updated, some Android asynchronous components

have been replaced by new ones or eliminated. For example,

AsyncTask and IntentService mentioned in [4, 7] are

deprecated in API level 30 [25, 26]. It is officially recom-

mended by Android to use the basic concurrency components

in Java to efficiently execute Android asynchronous tasks [25].

However, few works aim at the basic thread class

(java.lang.Thread), which is prone to being misused. For

example, an object reference held by a thread makes it

difficult to be recycled and released in time. In particular, if

a thread object has a strong reference [27] to another object

which invokes a destroy method before the thread finishes, its

recycling and releasing will be blocked by the thread holding

its reference. It wastes memory resources, and can cause an

out of memory (OOM) crash. Moreover, Java provides the

interrupt mechanism to terminate a thread, but the interrupt()
method invocation will only set the status of the thread if it

is running [28]. If a thread is notified that it is interrupted

via the invocation but there is no corresponding interrupted

status checking to end running in time, it makes interrupt()
method invocation unresponsive. This leads to unnecessary

code execution and waste of resources.

To detect these basic thread misuses, there are some chal-

lenges. The first challenge is to analyze the happens-before

relationship between the end of the thread and the call of

the destroy method of its referenced object. The scheduling

of multiple threads is non-deterministic, leading to different

program behaviors. And identifying methods with the destruc-

tion semantics is also a challenge, which is vague in practice.

It depends on many factors, documentation, comments or

even just developers’ habits. Finally, reducing false negatives

without precision decrease is a challenge too. Coarse-grained

static analysis suffers from notorious high false positives

while a path-sensitive approach struggles with path explosion

resulting false negatives in a limited time.

Our Approach. In this paper, we identify three typical

misuse patterns of the basic thread, which are called Hard-

ToRelease (HTR), InterruptNoResponding (INR) and NotTer-

minatedInTime (NTT), and propose a lightweight approach

to detect the thread related defects based on event analysis

(Section IV), avoiding the multiple exploration of a large

portion of the code. Firstly, we extract the misuse-related

event, containing the destroy events of the error-prone object

referenced by a thread and the thread events (Section IV-A).

For the former, we present a statistical approach to the

identification of methods that have destruction semantics in

practice (Section IV-A1) and are misused easily. The data

shows that the classes with a destruction method are widely

distributed in various platforms like JDK, Android SDK, and

Spring Framework (Section II-B), indicating their instances are

widely distributed as well. For the later, we focus on the thread

event affecting its status and task, such as the initialization,

start, termination, interruption and so on (Section IV-A2).

Then we analyze the misuse-related events based on the

interaction between the threads (Section IV-B). Loop analysis

of the event run() method is used to determine whether it

will respond to an interrupt invocation (Section IV-B1). The

happens-before relationship is used to determine the order

between the thread ending and the invocation of the destroy

method of an object referenced by the thread (Section IV-B2).

We specifically handle the happens-before relationship brought

by the Thread.start()/join(), representing the start of an asyn-

chronous task and the start of thread synchronization. Fur-

thermore, many tasks in the thread are implemented by the

java.lang.Runnable interface, so that we build a special alias

relationship between the thread and the task to detect misuses

more thoroughly (Section IV-B3). With the analysis result,

we design algorithms based on the three misuse patterns

(Section IV-C). Finally, we build a tool named Leopard to

detect the misuses automatically according to the algorithms.

We evaluate Leopard and the experimental data shows

Leopard is powerful to detect these misuses (Section V).

In summary, our contributions are as follows:

• We identify three misuse patterns, i.e., HTR, INR and NTT,

to characterize the misuse of the basic thread in Java.

• We propose a lightweight flow-sensitive approach based on

event analysis to detect the thread related misuses with the

patterns. It focuses on the existence or the order of the thread

events and the destroy events of objects it refers to. We also

propose clear rules to identify the object which may be hard

to be recycled and released by GC when referenced by a

thread.

• We design succinct and efficient algorithms based on the

analysis and implement them with a lightweight tool called

Leopard. We evaluate it on 9 large Java programs from

Github and 147 real-world apps from F-Droid. Experimental

results demonstrate it can efficiently detect thread-related

misuses. We report issues and 66 of them are confirmed by

developers where 21 are fixed.

II. BACKGROUND

In this section, we will present the thread component, the

garbage collector (GC) in Java with a statistical analysis to

study the classes containing “destroy” method, and the thread

interrupt mechanism. At last, a motivating example shows the

problems caused by misuses of the basic thread.

TABLE I
DESTRUCTIBLE CLASS DISTRIBUTION

Classification #Destr. Class Rule (in Package)

JDK 1,564
java.*, javax.*,“sun.*”,“com.sun.*”, “jdk.*”,

“org.omg.*”, “org.w3c.*”, “org.xml.*”,
“org.jcp.*”, “org.ietf.*”

Android SDK 2,027 android.*, androidx.*
SpringFramework 1,117 org.springframework.*
Third-party Impl. 16,232 the remaining

Total 20,940 -

A. Async Component in Java and Android

The asynchronous component refers to the encapsulation

or implementation of the original thread to quickly im-

plement asynchronous tasks. JDK provides the most basic

thread components: thread implementation (java.lang.Thread)

and reserved interface (java.lang.Runnable). There are only

two ways to create a new thread of execution. One is to

declare a class to be a subclass of java.lang.Thread and

the other way is to declare a class that implements the

interface java.lang.Runnable while pass its instance to a

thread. Some of the asynchronous components provided by

Android are the target research objects in previous works [2–

4, 6], such as AsyncTask, AsyncTaskloader, In-
tentService. But they are deprecated by Android offi-

cially for performance reasons [25, 26, 29]. It is officially

recommended to use the standard concurrent components to

efficiently execute Android asynchronous tasks [25]. This is

also one of the motivations why we analyze and detect misuses

of the basic thread.

B. GC and Thread Preemption

Java uses the Garbage Collector (GC) to automatically recy-

cle memory for objects. GC adopts the root search algorithm to

determine whether an object is “garbage”, that is, to determine

whether an object is alive or not. The active thread is one of

the important components in the GC roots where the search

starts. It means that if a thread is alive, objects referenced

strongly by it directly or indirectly will not be marked for

garbage collection.

Java does not have an explicit destructor as in C++. Objects

may have a destroy(), close() method to release occupied

resources actively or via onDestroy() callback passively. It is

not the actual destruction of the object, but the preparation

before the object is recycled. After the destroy method of an

object is called, the resources occupied by it will be released,

and the object itself should be recycled by GC in time and no

longer be accessed again theoretically. We perform a statistical

analysis, trying to answer the following empirical question

(EQ):
• EQ: How many classes are there with the destroy semantic

method in Java programs and Android applications?
EQ Result. We use the experimental dataset in Section V, 9

large Java programs and 147 apps, for statistics, including JDK

and Android SDK. Here, a method with a name containing

“destroy”, “close” will be roughly regarded as the destroy

semantics one and its declared class will be counted as the

destructible class. Table I shows the result. We have identified

a total of 20,940 destructible classes without duplicates in

about 400,000 classes. It can be seen that they are not only

widely distributed on various platforms and frameworks, but

also quite common in upper-layer applications and programs.

The thread scheduling is preemptive in Java. It means that

the scheduling of threads is the responsibility of the operating

system rather than the program itself. That is to say, Java does

not provide a solution for manual management or termination

of the thread in time directly. What all the developers can

do is to call the interrupt()/stop() method. If the thread is

running, then the interrupt() invocation will do nothing except

setting an interrupted status [28]. At this time, if the thread

has not checked the interrupted status during executing with

the asynchronous loop (usually seen as time consuming),

the invocation will lose responding and the thread will not

terminate as soon as expected.

C. Motivating Example

We will show the typical problems caused by the misuse of

the basic thread via a motivating example. Listing 1 defines

two classes: a destructible object class named Destruc-
tibleObject with the destroy() method and a subType of

thread named WorkerThread (lines 7 and 18). The main()
method declares a DestructibleObject object obj, and

calls its init(), startTask(), and destroy() methods sequentially

(lines 2-5). The class, DestructibleObject, initializes

a thread object as its field (line 8) and starts it to perform

asynchronous tasks (line 15). The thread object receives a

DestructibleObject argument and assigns it to its own

field named dObj (line 21). After the startTask() method

invocation, the thread workerThread will be executed and its

run() method will be invoked if it is selected by the thread

scheduler. At the end of the run() method, the data has been

assembled, and the object will be updated (lines 24-25).

Listing 1. A Motivating Example

1 public static void main(String[] args){
2 DestructibleObject obj = new DestructibleObject();
3 obj.init();
4 obj.startTask();
5 obj.destroy();
6 }
7 class DestructibleObject{
8 Thread workerThread = null;
9 public void init(){

10 workerThread = new WorkerThread(this); }
11 @PreDestroy
12 public void destroy(){
13 if(workerThread != null){
14 workerThread.interrupt();} }
15 public void startTask(){ workerThread.start(); }
16 public void update(Object data){ ... }
17 }
18 class WorkerThread extends Thread{
19 DestructibleObject dObj = null;
20 public WorkerThread(DestructibleObject obj){
21 dObj = obj; } // dObj will be hard to be

released after its destroy method
invocation if the thread is alive

22 public void run(){
23 while (...){ ...}//No Response to the

interruption call in line 14
24 data = ...;
25 dObj.update(data); ...}
26 }

Notably, the execution of the code in the run() method is

asynchronous. So there is an indeterminate happens-before

relationship between the destroy() method invocation (line 5)

and the end of run() method (line 25). Since the workerThread
object holds a strong reference to the DestructibleOb-
ject object, even if the destroy() method is called first,

the DestructibleObject object cannot be recycled in

time by the GC as mentioned before. This causes a potential

memory leak defect, especially if the destructible object is

a large object, such as a handle of a database, a reference

of an Android Activity, or an object holding a native library

resource. Besides, although the DestructibleObject obj
tries to finish the execution of the workerThread (lines 13-

14), there exists no interrupted status check in the loop (seen

as time-consuming) of the run() method to respond to the

intention of terminating the execution as soon as possible (line

23). This also leads to a potential resource wasting.

III. MISUSE PATTERN

We identify three misuse patterns on the basic thread in

Java based on the Java document and the projects in practice.

They can cause both functional and performance problems,

described as follows.

• HardToRelease (HTR). As mentioned before, if an instance

of the basic thread holds a strong reference [27] of a

destructible object (Listing 1 line 22), the object will never

be actually released by the GC until the thread finishes. In

this paper, we call the prone mis-referenced object, who has

a destruction semantic method, a destructible object. That is,

the strong reference held by an active thread is preventing the

object from being recycled, which makes it difficult for the

object to be released. This can lead to unnecessary memory

usage and even memory leaks.

• InterruptNoResponding (INR). When a thread is running,

there is no perfect way to end it immediately. Its interrupt()
method can act as a bridge of the interaction between the

main thread and the worker thread. If the thread is in the

Running state, then its interrupt status will be cleared and

it will receive an InterruptedException when the

interrupt() method is called. Otherwise, it is just to set the

interrupted flag [28]. At this time, if the loop (considered time

consuming) in its run() method does not check the interrupted

status, then the invocation loses any responding as expected

(Listing 1 line 24). We call it InterruptNoResponding (INR).

This problem will lead to execute useless program instruc-

tions, resulting in unsatisfied program intent and the waste of

resources.

• NotTerminatedInTime (NTT). If a destructible object is ref-

erenced by an active thread, the thread should be interrupted

before the destructible object destroy, i.e., its destroy method

invocation, as it may use the object before its termination.

we call the misuse NotTerminatedInTime (NTT). In detail,

NTT occurs when an active thread holds a reference (whether

it is a strong reference, a weak reference [30], or the other

reference) of a destructible object, and the invocation order of

the object’s destroy method and the termination of the thread

CH

CFG
CG

Bytecode

Event
Definition

Extraction Thread Event

Destructible
Object Event

“Destroy”
Rules

Events

Alias Analysis

Interrupted
Status Check

HB Analysis

Patterns

A
na

ly
si

s

Bug
Report

Pr
ep

ro
ce

ss
in

g

Detection

HTR

INR

NTT

isAlias(v1 , v2)

breakCheck(m)

HB(E1 , E2)

Fig. 1. Overview of Our Approach

are indeterminate. A better usage in practice is to send an

interrupted message to end the thread as soon as possible

before the object is destroyed, because at this time accessing

the object is unnecessary or illegal.

IV. APPROACH

Our insight is that the thread-related code occupies only a

small part of the program and these misuses can be reduced to

the event existence or the order determination between events.

Therefore, the approach based on event analysis can avoid

the analysis of all paths and all variables, thereby improving

efficiency. Figure 1 shows the overview of our approach. We

take the Java bytecode as input to get the basic program

properties such as the class hierarchy (CH) relationship, the

control flow graph (CFG), and the call graph (CG) of the pro-

gram. Then we extract the misuse related events. Combining

previous work [31, 32] and practical experience, we propose

explicit rules for identifying these destructive objects. After the

extraction of the events, we analyze them with loop analysis,

happens-before relationship construction and alias relationship

between variables for the misuse detection. Finally, misuses

will be detected via the algorithm based on the patterns and

the analysis result, and recorded into the report.

For convenience of presentation, we introduce Event to

represent method invocation and specify it with thread related

invocations driven by the misuses detection demand in the

following section.

Definition IV-1 (Event). An event is a 3-tuple

E = 〈caller,method, arguments〉
presenting a method invocation consisting of the caller, the
method and the argument list, where the caller is the instance
the underlying method is invoked from and the argument list
is the arguments used for the method call.

For an Event, its caller and method always exist. In general,

the number of arguments in an invocation may be any non-

negative number. But we assume that the number is zero

or one, as we focus on Thread, Runnable and destruc-

tible objects. Particularly, we take the assignment statement

to the field variable as a set method invocation, that is,

E = 〈caller, “setName”, “Bob”〉 represents caller.name =
“Bob”.

A. Event Extraction
The misuses involve the destroy event and the thread event

which need to be extracted at first.
1) Destroy Event Extraction: A destroy event (EDestroy)

is the destroy method invocation of a destructible object. The

bean object under the Spring framework has the destroy()
method. The Activity and Fragment in Android has the

onDestroy() callback triggered by the framework.
Destroy Event Identification. In fact, JDK provides an

annotation, @PreDestroy in the package javax.annotation,

with the same meaning since JDK 1.6. This annotation can

modify a method to mark the method a pre-destroy one (as

marked in Listing 1, line 12). Its meta annotation, @Re-
tention, has the value of @RUNTIME, which means the

annotation could be obtained even at runtime. It is widely

used, especially in Spring projects. Searching for “PreDestroy”

in GitHub, the results contain about 303K code, 11K commits,

2K issues. It is said that the method annotated with @PreDe-
stroy is typically used to release resources that the instance

holds in Java Specification Requests 250 (JSR 250) [32]. So it

is a generalizable method to help us identify the destructible

object from the bytecode.
Based on the above knowledge and the observation in

Section II-B, we identify the destructible object as well as

the destructible event. At first, we treat an object of a class

as the potential candidate destructible object if it satisfies any

one of the following rules: (1) it has a method marked with

the annotation @PreDestroy; (2) it has a method with a

name containing “destroy” ignoring case; (3) it has a method

named “close”. We then refine the rules via code analysis to

reduce false positives.
Refinement. The destroy event identified by the rules above

works on most cases, representing the destruction semantics

really. But there are false positives caused by the special

implementation without any code that destroys or releases

resources which should be excluded. In Java, a common way

to release a reference to a filed is to assign it the value NULL.

Another semantic representation of resource release is that its

field destroys itself in the destroy method, i.e., the field is

also a destructible object. Thus, we can exclude false positives

due to empty destroy methods and purified methods whose

bodies do not contain any field operations. Such methods

are usually reserved for destroy method semantics due to

some programming habit or specification, but currently do

not perform any tasks in their implementations. Finally, the

release of native resources in Java is usually through JNI,

so we think that calling JNI in the destroy semantic method

is a signal to release resources. Through the above, we can

distinguish ByteArrayInputStream and FileInput-
Stream. Both of them have a close() method but the former

does nothing while the later releases a native file handle.
In summary, we identify a destructible object if it has

a candidate destroy method whose body contains: (1) an

assignment statement for its field with the value NULL, (2)

an invocation statement of its field destroy method, or (3) a

JNI invocation statement.

2) Thread Event Extraction: For these misuses, we specify

thread events to facilitate detection detailed as follows:

• EInit represents the constructor invocation of a thread,

where a Runnable argument r may be passed; it means

the caller has been initialized.

• EStart means to start a thread, after which the thread run()
method is ready to be scheduled.

• ETerminate is a dummy method that indicates the thread’s

run() method has finished executing.

• EInterrupt is the interrupt()/stop() (which is unsafe) meth-

od invocation of a thread object to interrupt the thread.

• EInterruptCheck is the isInterrupted() method invocation of

a thread object to get the interrupted status of the thread.

• EJoin is the join() method invocation to wait for the thread

to finish executing.

• ESetField is the set field method invocation of a thread

object, which may be a shorthand for the field assignment

statement as mentioned above.

With the event illustration, we can locate them in the program

for further analysis.

B. Event Analysis

We analyze the events for the misuses: (1) the loop analysis

can be used to check if there exists interrupted status check

in the asynchronous task run() method; (2) happens-before

construction helps to link the events inter- or intra- thread; and

(3) alias analysis is used to identify the real task which may

extend the Thread or implement the Runnable interface as

well, and the thread where the event happens.
1) Interrupted Status Check: To detect the misuse, we need

to identify if there is an EInterruptCheck to break for each loop

in its run() method. According to the implementation of the

thread from JDK, the run() method may belong to the thread

object or its field target if the field is not NULL. Its field

target is a Runnable type and passed in from its constructor

invocation. We take both cases into account. We implement

an efficient loop recognition algorithm from [33]. For each

loop belonging to the run() method, it will be checked whether

there is isInterrupted() check in it after loop identification. We

denote the result as breakCheck(m), where m is the run()
method. In fact, we will first analyze and save the results of

the run() methods in all of Runnable and Thread classes.

All instances of each class have the same result, so that we

do not need to perform redundant analysis, and directly take

the cache result if necessary.
2) Happens-before Relationship Construction: To detect

these misuses, one of the subtasks is to determine the order in

which certain method calls occur, such as the end of a thread

and the destruction method of its referencing object, as shown

in Figure 2. The happens-before relationship is a partial order

relation, which can be formally defined such that:

• If event E1 and E2 occur in the same thread, E1 → E2 if

the occurrence of event E1 precedes the occurrence of event

E2;

• If event E1 is the sender of a message and event E2 is the

receiver of the message, E1 → E2;

EInit

EStart

b = new …

ETerminate EDestroy

ESetField

Events of Thread t Events of
Destructible b

EAny

EJoin

Fig. 2. Happens-before Relationship between Events. EAny is any event
between the initialization and destruction of the destructible object b.

static void entry(…){
Runnable r = …;
t = new T(r);
t.start(); }

class T extends Thread{
T(Runnable r){ super(r); }
void run(){ doTask(); }
void doTask(){

c = Thread.currentThread();
… } }

r

t

…

T.this

c

…
1
2
3
4
5
6
7
8
9
10

Fig. 3. Alias Analysis

where → means happens-before. It can be represented also as a

function HB whose range has three elements: HB(E1, E2) ∈
{true, false, unknown}. The unknown value means that if

two events happen in different isolated threads, then the two

threads are said to be concurrent, that is neither HB(E1, E2)
nor HB(E2, E1) is true. Like all strict partial orders, the

happens-before relation is transitive which means if E1 →
E2 and E2 → E3, then E1 → E3.

According to thread event semantics, events of the same

thread declared by us above may have implicit happens-before

relationship. That is, EInit → EStart, and ∀E → ETerminate.

In particular, in the scenario where two threads interact with

messages through events, some events between the two threads

will generate a definite happens-before relationship. That is

the event Et1
Startt2

which starts the thread t2 in the thread

t1 happens before the first event in the run() method of the

thread t2, and any event in t2 happens before its join() event.

They can be represented briefly as shown in Figure 2. Based

on the program call graph, control flow graph and the above

happens-before relationship as the critical connection, we can

infer the sequence of events more completely. Next, we will

determine which events belong to the same object.

3) Event-Caller Analysis: To determine which events be-

long to the same caller, we need alias analysis. Our alias

analysis is based on the existing analysis result of FlowDroid.

In particular, in alias analysis, we build a value flow edge

with the caller and argument (t := r) in event EInit as shown

in Figure 3 (red dotted arrow). It means that the Runnable
variable r is assigned as an argument to the field target of

the thread object t. If the field target is not NULL, then

the run() method in the thread actually executes the run()

Algorithm 1: MisuseDetection

Input: bytecodeProgram
1 events = eventAnalysis(bytecodeProgram);
2 allClasses = getAllClassesInApk(bytecodeProgram);
3 unCheckedClasses = ∅;
4 for each c ∈ allClasses do
5 if c inherits from Runnable then
6 if BreakCheck(c.run()) then
7 unCheckedClasses.add(c);

8 for each s ∈ events.startEvents do
9 for each f ∈ events.setF ieldEvents do

10 if isAlias(s.caller, f.caller) ∧
isDestructibleClass(f.arg.getClass()) then

11 recordHTRMisuse(s); // record HTR

12 for each c ∈ s.caller.pointClasses do
13 if unCheckedClasses.contains(c) then
14 for each i ∈ events.interruptEvents do
15 if isAlias(s.caller, i.caller) then
16 recordINRMisuse(s); // record INR

17 for each d ∈ events.destroyEvents do
18 if s.caller references d.caller then
19 for each i ∈ events.interruptEvents do
20 if isAlias(s.caller, i.caller) then
21 if ¬HB(i, d) then
22 recordNTTMisuse(s); // record NTT

23 if ¬ events.destroyEvents.isEmpty() ∧
interruptEvents.isEmpty() then

24 recordNTTMisuse(s); // record NTT

method of the Runnable object variable. At this point,

the run() invocation, ESetField, EInterrupt, and ETerminate,

are all consistent with the Runnable variable. Moreover, we

need to consider the static assignment of the thread, i.e., c
= Thread.currentThread(), which is a native implementation

and returns the current thread object. We use the backward

analysis recursively to find the run() method which calls this

method and is the first method called after the thread start.

That is, we get the thread class containing the run() method.

Then we obtain the thread object according to point-to analysis

(green solid arrow). If there is no explicit predecessor run()
method, we point it to the main thread. We use a function to

express whether n variables are aliases to each other, denoted

as isAlias(v1, ..., vi, ..., vn), where i, n ∈ N+ and 2 ≤ n.

C. Detection Algorithm

We detect misuses according to Algorithm 1, based on

the event analysis before. It takes the Java bytecode program

(Android apk can be regarded as a special one) as input and

attains all the events we focus on, such as EStart, EInterrupt,

EDestroy and so on (line 1). As all basic threads are subclasses

of Runnable (threads also implement this interface), we

analyze their run() methods at first, and record classes that do

not perform interrupt check to avoid redundant analysis for

INR detection (line 2-7). Thread misuse detection is aimed at

objects that have been started (line 8). In other words, those

threads that have not been in the Running state will not be

misused. If a thread has an EsetF ield event and is assigned a

destructible object to its field, a HTR will be recorded (line

9-11). Besides, for each thread with an interrupt event, if any

class of the object it points to has no interrupt check in the

run() method (that is, the class is in the cached unchecked

classes), then an INR occurs (line 12-16). Moreover, for

each thread holding a destructible object, whether it is strong

reference or not, and if the thread’s interrupt method is not

called before the destructible object is destroyed, a NTT is

logged (line 17-22). In particular, the NTT is logged if there

is no interrupt method call at this time too (line 23-24). Finally,

after the detection, we can get the report as a result.

V. EVALUATION

We have developed a tool named Leopard to detect mis-

uses of the thread with the event analysis approach mentioned

before, which is open source and public accessible1. It is based

on FlowDroid [34] and the intermediate representation

Jimple. We firstly identify the classes of destructible objects

referenced by threads. For Android apps, Leopard takes

dummy main methods as the main entry methods. But for

Java programs, all public methods are considered as entrances

as they may be called as third-party libraries. Misuses that

are not reachable from these methods will be ignored. Then

Leopard collects and analyzes all thread related events.

Finally, it performs a detection based on the algorithms.

We will evaluate Leopard with the following research

questions:

• RQ1: Can Leopard find the thread related misuses in Java

programs and Android apps?

• RQ2: How efficient is Leopard against the existing ap-

proach?

• RQ3: Do developers take the misuse as a serious problem?

A. Experiment Setup

All the following experiments run in a docker container,

where the operating system is Ubuntu with 46 cores (Intel (R)

Xeon (R) E5-2680) and 50G RAM. And the experiments are

running under the environment of JDK-1.8.

DataSet (9 large Java Programs and 147 Android
Apps). These open source Java programs are collected

through the search website, grep.app, which can search for

common git code hosting platforms, such as GitHub, and the

projects with more stars or forks will be returned first. We use

“PreDestroy” as the keyword and restrict the result to the Java

programming language. Thus 3,150 results are obtained, and

we select the top 10 repositories in the list. But one program

is excluded which is a teaching project with fragmented code

and asynchronous tasks. Their basic information is shown

in Table II, and it can be seen that they are very popular.

Among them, the Apache Tomcat [35] is an open source

implementation of the Java Servlet, JavaServer Pages, Java

1https://github.com/cuixiaoyiyi/Leopard

TABLE II
MISUSES DETECTED BY LEOPARD IN JAVA PROGRAMS

Project Fork1 Star LOC HTR INR NTT Time (s)
cxf[44] 1.3K 758 1,066K 22 58 7 6,184

hivemq[45] 211 738 737K 1 4 1 251
jetty[46] 1.8K 3.3K 181K 7 12 3 53

junit5[36] 1.2K 5.1K 31K 1 2 0 12
micronaut[47] 922 5.5K 531K 12 19 5 953
quarkus[48] 1.8K 9.7K 434K 17 34 3 685
spring[49] 33.3K 47.1K 1,507K 5 20 2 321
tomcat[35] 4.1K 6K 193K 6 18 1 59
wildfly[50] 2.1K 2.7K 1,443K 8 9 8 1,035

1 Here, Fork is a term in Github platform, which means to make a
copy of the repository into another account; not a fork operation in
multithreading.

TABLE III
MISUSES DETECTED BY LEOPARD AND ASYNCCHECKER WITH

DIFFERENT TIMEOUT CONFIGURATIONS IN APPS. M(N) DENOTES M
MISUSES DETECTED IN N APKS.

Tool HTR INR NTT Total

AsyncChecker
5min 18 (14) 9 (5) 15 (12) 42 (15)
30min 19 (14) 12 (5) 16 (12) 47 (15)

Leopard 333 (95) 94 (34) 296 (89) 723 (103)

Expression Language and Java WebSocket technologies. It is

often used when deploying web/server programs. Junit5 [36]

is a Java unit test case execution framework. We also selected

apps from the open source platform F-Droid [37]. It contains

1,249 apps totally. An app, where at least one method

in Activity contains the string “java.lang.Thread” (i.e.,
stmt.toString.contains("java.lang.Thread"))

in its Jimple statements (definition statement, invocation

statement, assignment statement, etc.), has been put in the

experimental dataset. Such filtering is to allow the comparison

tool to detect more problems in a short time, facilitating

comparison. In fact, there are no restrictions on the use of

Leopard. Finally, 147 APKs are filtered out. The data set is

also accessible via the aforementioned anonymous link.

Comparison Tool Selection. According to the existing

research [38], the tool, LeakDroid [39], has supported the

leak detection caused by the thread while others have not,

such as Relda [40], Android Lint [41] and FindBugs
[42], Code Inspection. But LeakDroid has been in-

accessible from the website (page not found error) and, we

have emailed its author and received no response. Moreover,

we have tried to use fuzzing tools, such as Monkey [43], to

trigger the exceptions caused by these misuses, and they work

on the self design app with enough input events and time

consumption but struggle on the real world app with more

complex interaction. Finally, we select AsyncChecker [6]

as the comparison tool, which supports misuse detection of the

asynchronous component AsyncTask with the path-sensitive

approach, and we adapt it for misuse detection of threads.

B. Effectiveness of Leopard

We conduct experiments on the dataset to evaluate the error

detection ability of Leopard. Table II shows the misuses

detected in Java programs (total: 285) and Table III shows

the result in Android Apps (total: 723). We have found that

the proportions of the misuses of INR (176/285=61.2%) in

Java programs and Android apps (94/723=13%) are totally

different. Through the statistics of the number of events,

we have found the reason is that there are more thread

interruption calls in the Java program compared to the Android

app, and the Java programs prefer to reuse the thread object

allocation statement with different Runnable tasks. This

shows that Java program developers pay more attention to

thread maintenance. For the misuses of HTR, they appear

much more often in Android apps (333/723=46.1%) than Java

programs (79/285=27.7%). It is probably because Android

threads easily reference typical destructible objects in Android,

such as Activity and View. And for the misuses of NTT,

it is similar with HTR because the interruption event and

the destroy event always need to be invoked in upper level

application as the Java program may be used as a third-party

library.

Case Study. We will use a case study to illustrate the effec-

tiveness of our approach. Listing 2 shows code segments from

a real app with the package name namlit.siteswapgenerator.

There is a method onOptionsItemSelected (...) to respond to

the menu event from the class MainActivity (line 2). It

responds differently depending on the different items in the

menu (line 3-7). One of the responses is to save parameters

via a method saveGenerationParameters () invocation (line 6)

declared below (line 8). This method creates a dialog instance

whose class is SaveGenerationParametersDialog in-

teracting with the user finally (line 12). After a series of

interactions and method invocations, the doSthInDatabase ()
method of the class SaveGenerationParametersDia-
log will be called finally. An anonymous thread is created

to perform database-related asynchronous tasks in it (line

14-16). This task is carried out by an anonymous inner

class that implements the Runnable interface. A non-static

anonymous inner subclass of the Runnable will hold an

instance reference to the class SaveGenerationParam-
etersDialog. The latter one inherits from View which

is a destructible object. Hence a HTR misuse occurs. As

we can see, there are many else if blocks in it and the

path-sensitive approach can cause a false negative due to the

path explosion. However, according to our approach, only

two events, the initialization of the thread (line 14) and the

assignment of its DialogFragment field (implicit), need

to be concerned, and a large number of unrelated code and

paths do not need to be explored more than once. In fact,

75.6% of classes involved in the HTR misuses are non-static

anonymous inner sub-classes of Thread and Runnable.

They contain the implicit object reference to the outer class

that is transparent for developers in the source code, which

can be avoided by a better practice.

The path-sensitive approach will explore a large number

of branches: on the one hand, the exploration is complex as

many branches will cause the path explosion; on the other

hand, there is a thread related operation so that the method

onOptionsItemSelected (...) will not be skipped, at this time the

Listing 2. A Misuse Detected by Leopard under Path Explosion

1 class MainActivity extends AppCompatActivity{
2 public boolean onOptionsItemSelected (MenuItem

paramMenuItem) {
3 int i = paramMenuItem.getItemId ();
4 if (i == 2131296281) {...}
5 else if (i == 2131296290) {
6 saveGenerationParameters (); // save
7 } ...}//7 more else if blocks are omitted here
8 public void saveGenerationParameters () {
9 ...// omitted

10 (new SaveGenerationParametersDialog ()).show (...)
;}

11 }
12 class SaveGenerationParametersDialog extends

DialogFragment {
13 public void doSthInDatabase () {
14 (new Thread (()->{
15 ... //time-consuming task omitted
16 }).start (); ... }//omitted

pruning strategy will not work. Therefore, the path-sensitive

solution will yield a false negative for this misuse detection

under limited time or number of paths. For our approach, the

thread related point in the method onOptionsItemSelected (...)
is only the method saveGenerationParameters () invocation

(line 7). All other thread-independent invocations and state-

ments have been ignored after being explored once. Eventually

we have found the HTR misuse, which is a potential resource

leak, reducing false negatives.

Answer to RQ1. Leopard can be used not only for

Android apps (723 misuses), but also for large Java programs

(285 misuses) effectively. Java program developers pay more

attention to the thread maintenance. The anonymous inner

subclasses of Thread and Runnable in destructible classes

play an important role among the HTR misuses which can be

improved with better programming practice.

C. Comparison on Apps

In this section, we will compare Leopard to the existing

approach in [6] which is path sensitive, via (1) the misuse

number and detection time, (2) the intermediate information

(event covered during analysis) and (3) manual check for

precision and recall.

Misuses and Time. We configure AsyncChecker with

two different timeout configurations: 5 minutes and 30 min-

utes. The result is shown in Table III where 18 (14) rep-

resents 18 misuses detected in 14 APKs. We can see that

AsyncChecker has detected 42 misuses in 15 apps under 5

minutes timeout and 47 misuses in 15 apps under 30 minutes

timeout, while Leopard has detected 723 ones in 103 apps.

The increase in time does not allow AsyncChecker to

detect misuse on more apps and there is one app whose

time consumption does not reach the timeout threshold un-

der both configurations. Although there is an increase of

misuses detected in the 15 apps, the increment with much

more time consumption (600%), is a small proportion (0.7%)

compared to the result of Leopard. In addition, Leopard
has significant advantages in terms of time consumption.

For the apps, the average time it takes is about 60s while

the maximum time is 405s. And among the detection result

0
20
40
60
80
100
120
140

50 400 3200 25600 204800 1638400

Event

Time (ms)

(2) namlit.siteswapgenerator
Async-E Async-E-D Leopard-E-D

0
5
10
15
20
25
30
35
40

0 100 200 300 400 500 600

Event

Time (ms)

(1) com.dosse.bwentrain.androidPlayer

0

500

1000

1500

2000

2500

0

50

100

150

150 1500 15000 150000 1500000

Event

Time (ms)

(3) com.ghostsq.commander

0

50

100

64 1024 16384 262144

Event

Time (ms)

(4) net.sourceforge.opencamera

Fig. 4. Event Coverage. Async-E means the number of events covered
during detection of AsyncChecker. Async-E-D and Leopard-E-D mean
the number of events covered during detection of AsyncChecker and
Leopard after deduplication, respectively. The second vertical axis on the
right in the sub-figure (3) is for Async-E only.

of AsyncChecker, only 12 (8.2%) apps do not reach 30

minutes timeout threshold.

Time Complexity Analysis. The reason why our approach

is so efficient is that our approach has an acceptable polyno-

mial time complexity. We first analyze the time complexity of

each step. We use C, M, S to denote the number of classes,

methods, and statements in a program respectively. Typically,

C is smaller than M, and both of them are much smaller than

S, which means that the power complexity of C and M is

also less than S. (1) Event extraction is determined by a few

method invocations, which is linearly related with the number

S of statements. (2) For each run() method, the algorithmic

complexity of loop recognition is O(N+K*E), where N is

the node number, E is the edge number in its CFG and K

is unstructuredness coefficient which is usually small [33].

The complexity of this step is approximately O(S) as they

are much smaller than S. (3) Standard alias analysis has cubic

time complexity. (4) Happens-before determination. Compared

to the previous steps, it is more complex. In the worst case,

each determination needs to traverse the super control flow

graph of the entire program. At this point, the complexity

is O(S+Esuper), where Esuper is the number of edges of the

hypergraph, which will not exceed S2. So the complexity

of this step is O(S2). In summary, our approach has a time

complexity about O(S4) - O(S5) on average, and O(S7) in worst

case, which is far superior to exponential overhead.

Coverage of Events. To verify whether the event based

approach in this paper matches the demand of the misuse

detection, we record events covered during the detection

of the tools. The events contain EInit, EStart, EInterrupt

and implicit run() method invocation of a thread. Once

the invocation statements of these methods or the meth-

ods themselves are analyzed, the time and event will be

recorded. In the end, we select 4 apps to display that

AsyncChecker can detect the most misuses, containing

com.dosse.bwentrain.androidPlayer, namlit.siteswapgenerator
, com.ghostsq.commander and net.soucefor-ge.opencamera .

Figure 4 shows the relation of the number of covered events

and detection time for both Leopard and AsyncChecker.

Async-E means the number of events covered during detec-

tion of AsyncChecker. Async-E-D and Leopard-E-D mean

TABLE IV
DETECTION RESULT COMPARISON BETWEEN ASYNCCHECKER AND LEOPARD ON 15 ANDROID APPS

App Package Name
AsyncChecker Leopard

HTR INR NTT HTR INR NTT
TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

ch.hgdev.toposuite 1 0 3 0 0 0 1 0 3 4 0 0 0 0 0 4 0 0

com.dosse.bwentrain.androidPlayer 1 0 0 5 0 0 1 0 1 1 0 0 3 1 2 1 0 1

com.ghostsq.commander 1 0 1 1 0 2 1 0 1 2 0 0 3 0 0 2 0 0

com.github.axet.audiorecorder 0 0 0 1 0 2 0 0 0 0 0 0 3 0 0 0 0 0

com.jovial.jrpn 1 0 1 1 0 0 0 0 2 2 0 0 1 0 0 2 0 0

com.spisoft.quicknote 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0

de.reimardoeffinger.quickdic 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0

de.rochefort.childmonitor 2 0 0 0 0 0 1 0 1 2 0 0 0 0 0 2 0 0

godau.fynn.usagedirect 1 0 1 0 0 0 1 0 1 2 0 0 0 0 0 2 0 0

godau.fynn.usagedirect.system 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0

menion.android.whereyougo 1 0 1 0 0 1 1 0 1 2 0 0 1 0 0 2 0 0

namlit.siteswapgenerator 3 0 6 0 0 0 3 0 6 9 0 0 0 0 0 9 0 0

net.justdave.nwsweatheralertswidget 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0

net.sourceforge.opencamera 2 0 0 1 0 0 2 0 0 2 0 0 1 0 0 2 0 0

xyz.myachin.downloader 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

Sum 18 0 13 9 0 6 15 0 17 31 0 0 13 1 2 31 0 1

the number of events covered during detection of Async-
Checker and Leopard after deduplication with their hash

codes, respectively. The second vertical axis on the right in

the sub-figure (3) is for Async-E only. With the configura-

tion of 30 minutes timeout for each app, AsyncChecker
covers 37 events while Leopard covers 232 events in much

shorter time. Under the best case, AsyncChecker can cover

15.9% (37/232) of events. And Leopard can cover 86.2%

(232/(37+232)) even in the worst case. Sub-figure (3) in

Figure 4 reveals the reason why the recall of AsyncChecker
rate is low. Although it covers 2,357 accumulated events, it

covers only 9 unique ones. That is to say, it is trapped by

paths that include thread events without any misuse, which

can be avoided by Leopard.

Precision and False Positives. To evaluate how precise

Leopard is, we have counted the false positives and false

negatives of the two approaches manually in 15 apps where

AsyncChecker can detect misuses. A total of 78 misuses are

involved, excluding the misuses unreadable, such as the ones

caused by code obfuscation. We take all the results detected

by the two tools as the complete set to calculate the false

negatives. The result is shown in Table IV. The precision,

recall and F1 value of AsyncChecker are 100%, 53.8%,

0.7, respectively, while those of Leopard are 98.7%, 96.1%,

0.974, respectively. The recall of AsyncChecker is inferior

to the value it claims, because it is difficult to detect false

negatives for the work compared to [7], distorting the recall.

One among the three false negatives is because Leopard
does not take the class’s initialization method (“〈clinit〉 ()”)

into account, and the other two are because it does not do

a full point-to analysis causing the edge missing in the call

graph. The result shows that our approach is able to greatly

reduce false negatives.

Answer to RQ2. Leopard can detect the misuses effi-

ciently via covering more misuse related events within much

shorter time based on event analysis, reducing lots of false

negatives while maintaining a high precision.

D. Feedback from Developers

We have reported the issues to the developers Leopard has

detected. For Android apps, we exclude the apps which have

been archived, have no issue track, require a complete pull

request, whose source code cannot be public accessible or have

not been updated for more than two years. Finally, we have

reported issues for 39 applications and received 22 feedback

so far. Two of the feedback claim that their thread object lives

for a short period of time and would not care about them,

and one issue has been closed as not in their repair plan. The

remaining 19 feedback have confirmed the issues involving

66 misuses (HTR: 59, INR: 6, NTT: 1). Among them, 21

misuses have been fixed already. The confirmed issues are

detailed in Table V. As we can see, most of them are popular

and used by many people, as indicated by real downloads

on Google Play, or has many forks and stars in Github.

For example, Ghost Commander [51] has been downloaded

over a million times from Google Play, which is a dual-

panel file manager and FreeRDP has been forked more than

23,500 times with over 8,600 stars in Github, which is an

open source and free implementation of the Remote Desktop

Protocol (RDP). Developers pay more attention to HTR than

the other two misuse patterns, probably because it is more

likely to occur due to the programming habit or the memory

constraint on mobile devices directly. A typical misuse of HTR

is the abuse of Activity as Context or a reference to a

destructible object is unintentionally generated in a non-static

inner basic thread. Another common misuse is to reference a

complex object where referencing only its field is enough. We

recommend developers to use an ApplicationContext
with a longer lifetime instead of an Activity if there are

no side effects on the program, reduce usage of non-static

TABLE V
CONFIRMED ISSUES IN REAL-WORLD APPS. (∗ FIXED)

App Fork Star #Download #Misuse Issue ID
VocableTrainer [52] 10 27 500K+ 1 93

toposuite[53] 2 12 5K+ 4 3
APK-Explorer-Editor[54] 53 278 7.8K+ 1∗ 29

LRC-Editor[55] 9 43 100K+ 3 35
Nextcloud[56] 1.5K 3.2K 100K+ 7 10691

TRIfA[57] 52 220 5K+ 14 350
AppManager[58] 174 2.3K 80K 1 854

Siteswap Generator[59] 3 13 1K+ 9 55
TC Slim[60] 66 1.1K 10K+ 2 36

blabber.im[61] 16 41 - 6∗ 674
OSMDashboard[62] 8 52 500+ 1∗ 169

Ghost Commander[51] - - 1,000K+ 1∗ 93
Offline Puzzle Solver[63] - 1 - 1∗ 1

FitoTrack[64] 48 161 5K+ 3 400
Conversations[65] 1.3K 4.2K 100K+ 2∗ 4366
monocles chat[66] 7 14 - 6∗ 44

ccgt[67] 4 11 - 1 7
Notes[68] 121 769 10K+ 1∗ 1574

FreeRDP[69] 23.5K 8.6K 10K+ 2∗ 8158

Total - - - 66 (21∗) -

inner class of the basic thread and follow the principle of

least reference.

For Java programs, we also have reported these issues to

developers. Some issues have not received feedback because

large Java projects have too many issues, and it may take a

long time to deal with them for developers, such as cxf. Some

issues are caused by other third-party libraries so we had a

hard time finding their repositories. There is even a third-party

library archived which is read only and its enhanced version

is not based on its source code. As we take the public method

as the entry method of the detection, the misuses confuse

developers so that there is a feedback which hopes that we can

provide a complete upper level application scenario or case.

Compared to Android, the feedback on these projects is not as

consistent as expected. The main reason is that these projects

lack an obvious program entry method, while on Android, we

can simulate its entry method better.

Answer to RQ3. Developers take these misuses as serious

defects. Totally, 66 misuses have been confirmed by developers

via our issue reports and 21 of them have been fixed already.

Developers should try to follow the minimum reference prin-

ciple to reduce unnecessary coupling or use the object with a

longer life cycle as much as possible.

E. Threat to Validity

There may be other methods with destructible semantics

which we do not take into account, resulting in false negatives.

Correspondingly, the destroy methods we identified may not

always be equivalent to the destroy semantics, causing false

positives. In addition, we have found that Java programs may

use the interrupt response via the exception try-catch rather

than the isInterrupted() status check, which may cause false

positives, although the latter responds much more quickly

than the former. Furthermore, although Soot is powerful, it

may cause false positives due to the suspicious edge in the

CG, especially for Java programs without a definite entrance.

Besides, we ignore the strict path reachability of misuses dur-

ing the detection, relying on FlowDroid, which may result

in potential false positives too. Moreover, the experimental

environment may affect the accurate reproduction of the data.

VI. RELATED WORK

We introduce related works in two aspects: one is about

the detection of the resource leak and the other is about

asynchronous analysis.

Resource Leak. Static analysis is used to detect resource

leaks [70]. A special research focuses on the memory leak

such as Java collections [71]. There is a work trying to

detect the problem of not closing resource object that inherits

from AutoClosable, using accumulation analysis [31]. And

LeakDroid and a memory leak detecting approach are based

on test cases [39, 72], trying to find leak via test suites.

A work constructs a benchmark with the bug oracle [38].

As a device platform with limited resources, the resource

problem on Android has been studied by some researchers.

The detection of Android resource leakage was proposed to

mainly aim at the failure to close hardware-related object

resources in time, such as cameras and sensors [40, 73–75].

A detailed empirical study conducted on 491 issues from 15

large open-source Java projects proposed taxonomies for the

leak types, for the caused defects, and for the repair actions

[76]. COBWEB and ACETON were present for energy testing

in Android, especially considering the lifecycle and hardware

state context [77, 78]. Compared to them, our work mainly

focuses on the misuse of the basic thread, causing resource

leak and waste such as the unnecessary execution of the CPU

which is hard to be quantified and the block of GC.

Asynchronous Behaviour Analysis. Many of the thread

related works have focused on data races, trying to detect

the read or write to the same object that does not have an

unambiguous happens-before relationship in different threads

in the Java and Android platforms [8–22]. In addition, there are

some works on Android apps according to the characteristics

of the platform. AsyncChecker [6], inspiring this work,

proposed five patterns to detect misuses about AsyncTask.

We refine three of them as the patterns in this paper and ignore

the other two patterns as RepeatStart rarely appears, and

EarlyCancel will not cause any defects. In addition, the

main difference between the three patters in this paper and

[6] is that we define the destructible object in detail (instead

of being limited to Activity/View) and generalize them

to characterize the misuse of the basic thread, exposing more

defects to be compatible with Android applications and Java

programs. APEChecker combined static analysis and dy-

namic GUI exploration to find errors [2], Lin et al. developed

a tool to refactor an AsyncTask into an IntentService
due to its performance problems [3] and so on. Compared to

them, we focus on the problem caused by the asynchronous

threads rather than the data race. In addition, Android platform

has gradually eliminated some asynchronous components pro-

vided by itself, such as AsyncTask, AsyncTaskLoader,

IntentService, etc [25, 26, 29]. Compared to them, Java’s

basic thread is a more fundamental asynchronous component

used in not only Android apps but also Java programs, which

is one of the motivations for our research.

VII. CONCLUSION

The basic asynchronous thread in Java is very useful, yet

error-prone. In this paper, we propose a lightweight approach

based on the event analysis to detect the misuses causing

the thread related resource leak and waste. We characterize

those destructible objects that are prone to mis-referencing

and summarize clear rules to identify them. Based on the

extraction and analysis of the thread event and the destroy

event, we design efficient algorithms and develop a tool named

Leopard to detect the defects. Experiments on real world

programs and the feedback from developers show that our

solution is effective and also efficient for the misuse detection.

In the future, we will refine the hazard level caused by the mis-

reference to the destructible object and extend this work to the

improvement of performance for the thread pool in Java.

ACKNOWLEDGEMENT

Thanks to Dr. Linjie Pan for the initial discussion for this

paper, to Ms. Yajun Zhu and Prof. Yan Cai for comments on

earlier drafts of this paper, and to the anonymous reviewers

for their helpful comments and suggestions. This work is

supported by the National Natural Science Foundation of

China (NSFC) under grants No.62132020 and No.62102405.

REFERENCES

[1] TIOBE Index for August 2023. [Online]. Available: https://www.tiobe.
com/tiobe-index/

[2] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu, “Efficiently
manifesting asynchronous programming errors in Android apps,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 486–497.

[3] Y. Lin, S. Okur, and D. Dig, “Study and refactoring of Android
asynchronous programming (t),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2015,
pp. 224–235.

[4] Y. Lin, C. Radoi, and D. Dig, “Retrofitting concurrency for Android
applications through refactoring,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2014, pp. 341–352.

[5] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting per-
formance bugs for smartphone applications,” in Proceedings of the 36th
international conference on software engineering, 2014, pp. 1013–1024.

[6] L. Pan, B. Cui, H. Liu, J. Yan, S. Wang, J. Yan, and J. Zhang, “Static
asynchronous component misuse detection for Android applications,”
in Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, pp. 952–963.

[7] Y. Kang, Y. Zhou, H. Xu, and M. R. Lyu, “DiagDroid: Android
performance diagnosis via anatomizing asynchronous executions,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 410–421.

[8] S. Schulz, E. Herrendorf, and C. Bockisch, “Thread-Sensitive Data Race
Detection for Java,” in 2021 28th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 2021, pp. 32–42.

[9] S. Blackshear, N. Gorogiannis, P. W. O’Hearn, and I. Sergey, “Rac-
erD: compositional static race detection,” Proceedings of the ACM on
Programming Languages, vol. 2, no. OOPSLA, pp. 1–28, 2018.

[10] Y. Li, B. Liu, and J. Huang, “Sword: A scalable whole program race
detector for java,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 2019, pp. 75–78.

[11] B. Liu and J. Huang, “D4: fast concurrency debugging with parallel
differential analysis,” ACM SIGPLAN Notices, vol. 53, no. 4, pp. 359–
373, 2018.

[12] B. Swain, B. Liu, P. Liu, Y. Li, A. Crump, R. Khera, and J. Huang,
“OpenRace: An Open Source Framework for Statically Detecting Data
Races,” in 2021 IEEE/ACM 5th International Workshop on Software
Correctness for HPC Applications (Correctness). IEEE, 2021, pp. 25–
32.

[13] S. Blackshear, N. Gorogiannis, P. W. O’Hearn, and I. Sergey, “Rac-
erD: compositional static race detection,” Proceedings of the ACM on
Programming Languages, vol. 2, no. OOPSLA, pp. 1–28, 2018.

[14] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye, “Efficient scal-
able thread-safety-violation detection: finding thousands of concurrency
bugs during testing,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, 2019, pp. 162–180.

[15] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection
for Java,” in Proceedings of the 27th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2006, pp. 308–
319.

[16] C. Radoi and D. Dig, “Effective techniques for static race detection in
java parallel loops,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 24, no. 4, pp. 1–30, 2015.

[17] D. Wu, J. Liu, Y. Sui, S. Chen, and J. Xue, “Precise static happens-
before analysis for detecting UAF order violations in android,” in 2019
12th IEEE Conference on Software Testing, Validation and Verification
(ICST). IEEE, 2019, pp. 276–287.

[18] P. Bielik, V. Raychev, and M. Vechev, “Scalable race detection for
Android applications,” ACM SIGPLAN Notices, vol. 50, no. 10, pp. 332–
348, 2015.

[19] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira, G. A.
Pokam, P. M. Chen, and J. Flinn, “Race detection for event-driven
mobile applications,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 326–
336, 2014.

[20] Y. Hu, I. Neamtiu, and A. Alavi, “Automatically verifying and repro-
ducing event-based races in Android apps,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, 2016, pp.
377–388.

[21] N. Salehnamadi, A. Alshayban, I. Ahmed, and S. Malek, “ER catcher:
a static analysis framework for accurate and scalable event-race detec-
tion in Android,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 324–335.

[22] P. Maiya, A. Kanade, and R. Majumdar, “Race detection for Android
applications,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 316–325, 2014.

[23] B. K. Ozkan, M. Emmi, and S. Tasiran, “Systematic asynchrony bug
exploration for Android apps,” in International Conference on Computer
Aided Verification. Springer, 2015, pp. 455–461.

[24] H. Tang, G. Wu, J. Wei, and H. Zhong, “Generating test cases to
expose concurrency bugs in Android applications,” in Proceedings of
the 31st IEEE/ACM international Conference on Automated software
engineering, 2016, pp. 648–653.

[25] AsyncTask. [Online]. Available: https://developer.android.google.cn/re
ference/android/os/AsyncTask

[26] IntentService. [Online]. Available: https://developer.android.google.cn/
reference/android/app/IntentService

[27] Types of References in Java. [Online]. Available: https://www.geeksfor
geeks.org/types-references-java/

[28] Thread. [Online]. Available: https://docs.oracle.com/javase/7/docs/api/ja
va/lang/Thread.html

[29] AsyncTaskLoader. [Online]. Available: https://developer.android.google
.cn/reference/android/content/AsyncTaskLoader

[30] WeakReference. [Online]. Available: https://docs.oracle.com/javase/8/d
ocs/api/java/lang/ref/WeakReference.html

[31] M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst, “Lightweight
and modular resource leak verification,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2021, pp. 181–
192.

[32] JSR250. [Online]. Available: https://jcp.org/aboutJava/communityproce
ss/mrel/jsr250/index3.html

[33] T. Wei, J. Mao, W. Zou, and Y. Chen, “A new algorithm for identifying
loops in decompilation,” in International Static Analysis Symposium.
Springer, 2007, pp. 170–183.

[34] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,

flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[35] Apache Tomcat. [Online]. Available: https://github.com/apache/tomcat
[36] Junit5. [Online]. Available: https://github.com/junit-team
[37] F-Droid. [Online]. Available: https://f-droid.org/en/
[38] Y. Liu, J. Wang, L. Wei, C. Xu, S.-C. Cheung, T. Wu, J. Yan, and

J. Zhang, “DroidLeaks: a comprehensive database of resource leaks in
Android apps,” Empirical Software Engineering, vol. 24, pp. 3435–3483,
2019.

[39] D. Yan, S. Yang, and A. Rountev, “Systematic testing for resource leaks
in Android applications,” in 2013 IEEE 24th International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 2013, pp. 411–420.

[40] T. Wu, J. Liu, Z. Xu, C. Guo, Y. Zhang, J. Yan, and J. Zhang, “Light-
weight, inter-procedural and callback-aware resource leak detection for
Android apps,” IEEE Transactions on Software Engineering, vol. 42,
no. 11, pp. 1054–1076, 2016.

[41] Android Lint: A Code Scanning Tool for Android Apps. [Online].
Available: https://developer.android.com/studio/write/lint.html

[42] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” Acm sigplan
notices, vol. 39, no. 12, pp. 92–106, 2004.

[43] Monkey. [Online]. Available: https://developer.android.google.cn/studio
/test/monkey

[44] Apache CXF. [Online]. Available: https://github.com/apache/cxf
[45] Hivemq. [Online]. Available: https://github.com/hivemq/hivemq-com

munity-edition
[46] Eclipse Jetty. [Online]. Available: https://github.com/eclipse/jetty.project
[47] Micronaut-core. [Online]. Available: https://github.com/micronaut-pro

jects/micronaut-core
[48] Quarkus. [Online]. Available: https://github.com/quarkusio/quarkus
[49] Spring Framework. [Online]. Available: https://github.com/spring-proje

cts/spring-framework
[50] Wildfly. [Online]. Available: https://github.com/wildfly/wildfly
[51] Ghost Commander. [Online]. Available: https://sourceforge.net/projects

/ghostcommander/
[52] VocableTrainer. [Online]. Available: https://github.com/0xpr03/Vocabl

eTrainer-Android
[53] toposuite. [Online]. Available: https://github.com/hgdev-ch/toposuite-a

ndroid
[54] APK-Explorer-Editor. [Online]. Available: https://github.com/apk-edito

r/APK-Explorer-Editor
[55] LRC-Editor. [Online]. Available: https://github.com/Spikatrix/LRC-Edi

tor
[56] Nextcloud. [Online]. Available: https://github.com/nextcloud/android
[57] TRIfA. [Online]. Available: https://github.com/zoff99/ToxAndroidRefI

mpl
[58] AppManager. [Online]. Available: https://github.com/MuntashirAkon/A

ppManager
[59] Siteswap Generator. [Online]. Available: https://github.com/namlit/site

swap generator
[60] TC Slim. [Online]. Available: https://github.com/TrackerControl/tracke

r-control-android
[61] blabber.im. [Online]. Available: https://codeberg.org/kriztan/blabber.im
[62] OSMDashboard. [Online]. Available: https://github.com/OpenTracksA

pp/OSMDashboard
[63] Offline Puzzle Solver. [Online]. Available: https://gitlab.com/20kdc/o

ffline-puzzle-solver
[64] FitoTrack. [Online]. Available: https://codeberg.org/jannis/FitoTrack
[65] Conversations. [Online]. Available: https://github.com/iNPUTmice/Con

versations
[66] monocles chat. [Online]. Available: https://codeberg.org/Arne/monocles

chat
[67] ccgt. [Online]. Available: https://github.com/pterodactylus42/ccgt
[68] NextCloud Notes. [Online]. Available: https://github.com/nextcloud/not

es-android
[69] FreeRDP. [Online]. Available: https://github.com/FreeRDP/FreeRDP
[70] D. Yan, G. Xu, S. Yang, and A. Rountev, “Leakchecker: Practical

static memory leak detection for managed languages,” in Proceedings of
Annual IEEE/ACM International Symposium on Code Generation and
Optimization, 2014, pp. 87–97.

[71] G. Xu and A. Rountev, “Precise memory leak detection for Java software
using container profiling,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 22, no. 3, pp. 1–28, 2013.

[72] M. Ghanavati and A. Andrzejak, “Automated memory leak diagnosis by
regression testing,” in 2015 IEEE 15th International Working Conference

on Source Code Analysis and Manipulation (SCAM). IEEE, 2015, pp.
191–200.

[73] J. Liu, T. Wu, J. Yan, and J. Zhang, “Fixing resource leaks in Android
apps with light-weight static analysis and low-overhead instrumenta-
tion,” in 2016 IEEE 27th international symposium on software reliability
engineering (ISSRE). IEEE, 2016, pp. 342–352.

[74] Y.-M. Tseng, J.-L. Chen, and S.-S. Huang, “A lightweight leakage-
resilient identity-based mutual authentication and key exchange protocol
for resource-limited devices,” Computer Networks, vol. 196, p. 108246,
2021.

[75] A. Banerjee, L. K. Chong, C. Ballabriga, and A. Roychoudhury, “En-
ergypatch: Repairing resource leaks to improve energy-efficiency of
Android apps,” IEEE Transactions on Software Engineering, vol. 44,
no. 5, pp. 470–490, 2017.

[76] M. Ghanavati, D. Costa, J. Seboek, D. Lo, and A. Andrzejak, “Memory
and resource leak defects and their repairs in Java projects,” Empirical
Software Engineering, vol. 25, pp. 678–718, 2020.

[77] R. Jabbarvand, J.-W. Lin, and S. Malek, “Search-based energy testing of
android,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 1119–1130.

[78] R. Jabbarvand, F. Mehralian, and S. Malek, “Automated construction of
energy test oracles for Android,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 927–938.

