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Abstract—SMT (Satisfiability Modulo Theories) has been
widely used in program verification, analysis, and test generation.
But sometimes, SMT solver outputs incomprehensible solutions,
especially for practical instances. Besides, due to the design of
the deterministic algorithms, for a given formula, the result of
each run is the same. In this paper, we concentrate on combining
SMT solving with probability, which will instruct the SMT solver
to give some plausible solutions.

We define a special problem: PSMT, which allows solving an
SMT instance with variables conforming to a certain distribution.
We define distribution under constraint for PSMT, which is based
on MCSAT (Model Constructing Satisfiability), a mainstream
SMT-solving algorithm. We propose the Prob-MCSAT algorithm,
which combines the MCSAT algorithm and introduces the
probability to variables. The visualized examples show that the
resulting assignments will form a clear trend based on Prob-SMT.

Index Terms—Satisfiability Modulo Theories, Model Con-
structing Satisfiability, Probability Distribution.

I. INTRODUCTION

SMT (Satisfiability Modulo Theories) solvers are powerful
tools used in various domains for solving complex logical
constraints involving combinations of different theories. It has
many applications, including model checking [1], software
verification [2], program analysis [3], test generation [4] etc.

Despite this, in daily use, there are still some minor prob-
lems. For example, the given solutions are not plausible and
they will not be very good tests for real-world situations. It
is related to the internal algorithm of the SMT solver. Most
algorithms and implementations prefer boundary values, like
the general simplex algorithm for linear theory [5].

void H e a l t h C a r e ( double weight , double h e i g h t ) {
BMI = we igh t / ( h e i g h t * h e i g h t ) ;
i f (BMI >= 1 8 . 5 && BMI <= 2 4 . 9 ) { . . . } / / h e a l t h y
e l s e { . . . } / / t reatment s u g g e s t i o n

}

Motivation Example. The Body Mass Index (BMI) is used to
assess the health status in demographic studies roughly, and
the healthy range for adults is [18.5, 24.9] [6]. Solving via
an SMT solver in the healthy path (line 3) will result in an

* These authors contributed equally.
† Corresponding authors.

assignment w = 0.375, h = 0.125 where w and h denote a
person’s weight and height. Although this test case is correct,
it seems very uncommon.

In many application scenarios, a variable usually follows
a certain probability distribution. We can add a probability
distribution, for example, w ∼ N(60, 10), h ∼ N(1.7, 0.1),
which means w follows the normal distribution with a mean
value of 60 and standard deviation of 10, similarly for h of
1.7 and 0.1 respectively.

In the following text, we will introduce how to combine
SMT with probability distributions and then propose a solving
algorithm named Prob-MCSAT based on MCSAT (Model
Constructing Satisfiability) algorithm [7]. After adding the
probability distributions, Prob-MCSAT can obtain an assign-
ment w = 66.82, h = 1.75, which seems a plausible solution.

In summary, our contributions and values are mainly:
1) We introduce the probability distribution into SMT and

name it the PSMT problem. It allows the variables in
solutions to satisfy certain probability distributions.

2) Based on the MCSAT algorithm, we define the Distribu-
tion under Constraint and construct the Prob-MCSAT al-
gorithm, combining probability distribution and conflict-
driven process. Prob-MCSAT obtains assignments that
satisfy constraints and Distribution under Constraint.

3) Given distributions for variables, Prob-MCSAT can gen-
erate a plausible solution. It can also be used for
sampling, where the resulting assignments will show
a certain trend in the satisfiable space. Especially for
some real-world scenarios, the produced solutions, for
example as test cases, are closer to reality.

II. BACKGROUND

A. MCSAT framework

MCSAT [7] is widely used to solve satisfiability problems
involving propositional formulas with first-order logic. Com-
pared with traditional SMT solvers based on the DPLL(T)
framework [8], MCSAT has not a theory solver as a black box
but organically integrates it into the solving process as part of
making an assignment. For theories where the theory solver
is relatively inefficient, for example, nonlinear int arithmetic
[9], MCSAT always performs better than DPLL(T) [10].
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Under the MCSAT framework, the solver initializes an
empty trail to store the partial assignment and inferred lemmas.
According to the input formula, the solver uses the correspond-
ing theory solver to make decisions and deductions on the
constraints, discovering new lemmas or contradictions. The
new information is used to update the current assignment,
where the updating process involves operations such as check-
ing, backtracking, and resolving. The process is repeated until
an assignment that satisfies the constraints is found or it is
determined that no solution exists.

B. Satisfiability Modulo Theories with Probability

There are some works combining SMT with probability,
where SMT solvers offer additional capabilities for solving
problems involving logical constraints and probabilistic rea-
soning. They have applications in many fields like proba-
bilistic program analysis [11] and stochastic hybrid systems
[12]. A technique known as SSMT (Stochastic Satisfiability
modulo Theories) [13] has been proposed for depth-bounded
reachability. All the aforementioned works concentrate on the
probability that the constraints are satisfied. Recent work on
SMT sampling [14] approximates sample points by adding
extra constraints after the solver obtains a solution.

III. PSMT: PROBABILITY SATISFIABILITY MODULO
THEORIES

The PSMT problem asks for an assignment that follows
the pre-defined “distribution” modified by constraints. A con-
straint denotes the logical formulas of an SMT problem. Given
a constraint ψ, ψ(α) denotes the simplified constraint via
substituting the partial assignment α into ψ. In order to define
the probability distribution on constraints, we should define
domains for variables first.

Definition 1 (Domain under Constraint). Given a constraint
ψ and variable x, the domain under constraint D(ψ, x) is the
domain of x where when assigning x any value in D(ψ, x),
there exists a full assignment satisfying ψ.

For complex constraints, obtaining the domain at the begin-
ning is almost impossible. The interdependence of multiple
variable assignments greatly hinders obtaining such domains.
Due to the difficulty of obtaining the Domain under Con-
straint, defining the joint distribution function for the SMT
problem at the beginning is also impractical. So we allow
variables to pre-specify a value distribution in R and define
the Distribution under Constraint.

Definition 2 (Distribution under Constraint). Given a con-
straint ψ and a distribution for variable x, whose probability
density function is P (x), x ∈ R, the distribution of x under
constraint ψ is a refined distribution whose probability density
function is P̃ (ψ, x),

P̃ (ψ, x) =


1∫

D(ψ,x)
P (x)dx

P (x), x ∈ D(ψ, x),

0, x ∈ R−D(ψ, x).

The integral of P̃ (ψ, x) over the domain is 1. The Distri-
bution under Constraint gives the distribution that a variable
follows, and based on it, we can derive the definition of PSMT.

Definition 3 (Probability Satisfiability Modulo Theories).
Given an n variable SMT constraint ψ, a value distribution P ,
and a variable order σ, find an assignment α |= ψ, i.e., α sat-
isfies ψ. Meanwhile, the i-th variable x follows distribution un-
der constraint, i.e., α[xi] ∼ P̃ (ψ({α[xσ1

], · · · , α[xσi−1
]}), xi)

where 1 ≤ i ≤ n.

Example 1. Given a constraint ψ = {−2 ≤ x ≤ 2∧x2+y ≥
1}, and x follows a uniform distribution in [−2, 2], i.e.,
U([−2, 2]). Note that the parameter of U is an interval, which
means that the variable follows a uniform distribution in the
interval. If a partial assignment is α = {y ← 0}, then
we have ψ(α) = −2 ≤ x ≤ 2 ∧ x2 ≥ 1. The Domain
under Constraint will be D(ψ(α), x) = [−2,−1] ∪ [1, 2]. We
can derive the Distribution under Constraint with probability
density function,

P̃ (ψ(α), x) =
1∫ −1

−2
1
4dx+

∫ 2

1
1
4dx

P (x) = 2P (x) =
1

2
,

where x ∈ D(ψ(α), x). In this example, we know x ∼
U([−2− 1] ∪ [1, 2]). If we sample a value v for x under the
distribution, a full assignment {x ← v, y ← 0} is a solution
to the PSMT problem.

Algorithm 1 Prob-MCSAT
Input: A set of real variables V , a constraint ψ.
Output: The status of the constraint (SAT/UNSAT).

1: M← []. // Initialize an empty trail.
2: while Exists an unassigned variable do
3: // Assign
4: x← the selected variable.
5: v ← GetAssignment(x, P ).
6: Propagate({x← v}): Attempt to bring the assignment

into ψ until no new assignment or conflict.
7: if No Conflict then
8: M←M∪ {x← v}.
9: else

10: l← the learned lemma to resolve the conflict.
11: if l is ⊥ then
12: return UNSAT.
13: else
14: // Backtrack
15: Remove assignment and lemmas fromM until no

conflict in ψ and add the learned lemma l to M.
16: end if
17: end if
18: end while
19: return SAT.
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IV. MCSAT WITH PROBABILITY

A. Prob-MCSAT Algorithm

Algorithm 1 is a modified version of MCSAT, especially
GetAssignment in Line 5, stated in Algorithm 2. We assign
a value according to Distribution under Constraint to the
selected variable.

The Prob-MCSAT also contains three key components:
Assign, Propagate, and Backtrack. Assign attempts to select a
variable and assign it a value (Lines 3-5); Propagate brings the
assignment to constraint to check whether the current partial
assignment is satisfiable (Lines 6-17); when encountering
conflict, Backtrack attempts to resolve the conflict via a theory
lemma and then go back to a candidate satisfiable state (Lines
9-17); Note that if a conflict cannot be resolved, then we
know that the constraint is unsatisfiable. When the union
of unsatisfiable intervals of a variable is R, there will be a
conflict. It happens when propagating a new assignment to
constraint and can be detected by some theory engines. For
example, x← 0 will result in a conflict in y2+1 = x, because
the unsatisfiable interval of y becomes R.

In the conflict-driven process, unsatisfiable intervals for
variables will gradually be built. It helps to build the Dis-
tribution under Constraint via building the Domain under
Constraint. Note that at the beginning, the Domain under
Constraint is not accurate and gradually becomes clear and
precise as Prob-MCSAT runs.

B. GetAssignment Algorithm

The unsatisfiable interval set is maintained globally and
modified inside the Prob-MCSAT algorithm when propagating
and backtracking. In Algorithm 2 (Lines 1-3), we convert
the unsatisfiable interval set to the satisfiable interval set via
complement in R, i.e., I ′ ← R −

⋃n
i=1 I[i], where I is the

unsatisfiable interval set, n is the size of I , and I ′ is the
satisfiable interval set.

If the union of the satisfiable interval set is R, which
means no constraint limits x, we can sample the value directly
under the distribution (Lines 4-7). Note that each variable
may indeed be unconstrained at the beginning, but as Prob-
MCSAT runs, the unsatisfiable intervals of the variable will
be replenished according to the conflict-driven process.

Given a distribution with probability density function P (x),
its cumulative distribution function CDF(v) =

∫ v
−∞ P (x)dx

and the inverse cumulative distribution function ICDF(t) = v.
As stated in [15], we can sample a value v under the uniform
distribution and CDF(v) = t. According to ICDF, we obtain
a sample point v under P (x), i.e., v = ICDF(t). But after the
conflict-driven process, R will be split into some fragments.
It is hard to compute the segmented ICDF on fragmented
intervals. As an example in Fig. 1a, after splitting unsatisfiable
intervals (−∞,−2.5) ∪ (−1.5,−0.5) ∪ (1,+∞) from R, the
satisfiable intervals are [−2.5,−1.5] ∪ [−0.5, 1].

We obtain a sample point via Lines 8-27 in the GetAssign-
ment algorithm. It first samples r under uniform distribution
in [0, s] where s is the sum of probabilities of fragmented

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

0.06

0.53

(a) Segmented Distribution

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

𝑟 = 0.44

0.06

0.38

(b) Sample in Segmented Distribution

Fig. 1: A normal distribution on fragmented satisfiable inter-
vals ([−2.5,−1.5] ∪ [−0.5, 1]) of a variable.

intervals of the original distribution. Note that since P̃ (ψ, x)
and P (x) are proportional as in Definition 2, sampling from
P̃ (ψ, x) in [0, 1] and sampling from P (x) in [0, s] is same. So
we utilize P (x) instead of computing P̃ (ψ, x) for simplifying.
We must restore r to the original distribution P (x) as its ICDF
is already known. The distribution of the final sample point

CDF (v) = CDF (L[k]) + r −
k−1∑
i=1

Q[i],

where Q[i] is the cumulative distribution of i-th interval, k is
the maximum index where r −

∑k−1
i=1 Q[i] > 0, and L[k] is

lower bound of k-th interval. So we obtain the sample point
v = ICDF(t) = ICDF(CDF(v)). For example, we sample r ←
0.44 in [0, 0.59], and r−0.06 > 0 tells that we should sample
in the second interval. The sample point is v and CDF(v) =
r − 0.06+CDF(−0.5) ≈ 0.68. Finally, we can obtain v =
ICDF(CDF(v)) ≈ 0.5.

V. CASE STUDY

We implemented the tool 1 based on Z3 4.12.1. The tool now
supports two types of distribution: U , uniform distribution; N ,
normal distribution. We concentrate on Example 2 [16]. and
run each parameter setting 1000 times.

Example 2. Assume we collect path constraints like

x− y ≥ 0 ∧ x+ y ≤ 0 ∧ y ≥ −1.
We want to sample in such a constrained area.

We set x ∼ U([−1, 1]) and y ∼ U([−1, 1]). A uniform
sampler without a conflict-driven process will generate sample
points like Fig. 2a. Prob-MCSAT with uniform distribution
will generate sample points like Fig. 2b. The difference
between them is that a uniform sampler will generate sample
points without considering the satisfiability, and Prob-MCSAT
will generate sample points in the satisfiable region following
Distribution under Constraint. At the two bottom corners of
the triangle, the sampling points of Fig. 2b will be obviously
clustered, which means that y ∼ U([−1, 1]) does not hold.
When x approaches -1 or 1, the satisfiable interval of y will
shrink, and y follows U([−1, x]) or U([−1,−x]), respectively,
so the sample points in the region will appear very dense. The
black diamond in Fig. 2a results from Z3, which is invariant
within running 1000 times.

1https://github.com/Ailuras/prob-smt
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Algorithm 2 GetAssignment
Input: A variable x and a distribution with corresponding
probability density function P (x).
Output: A satisfying assignment to x.

1: I ← current unsatisfiable interval set of x.
2: I ← Complement(I).
3: n← the size of I .
4: if I = R then
5: v ← sample under P (x).
6: return v.
7: end if
8: s← 0.
9: Q[i]← 0, i = 1 · · ·n.

10: for i = 1 · · ·n do
11: L[i]← lower bound of i-th satisfiable interval.
12: U [i]← upper bound of i-th satisfiable interval.
13: Q[i]← CDF (U [i])− CDF (L[i]).
14: s← s+Q(i).
15: end for
16: r ← a random number in [0, s].
17: k ← 0.
18: while TRUE do
19: if r −Q(k) ≤ 0 then
20: break.
21: end if
22: r ← r −Q(k).
23: k ← k + 1.
24: end while
25: t← CDF (L[k]) + r.
26: v ← ICDF (t).
27: return v.
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(b) Uniform Prob-MCSAT

Fig. 2: The difference between Uniform Sampler and Uniform
Prob-MCSAT.

Besides, we also show the performance of normal distribu-
tion in Fig. 3, where x ∼ N(M,V ) as stated in the captions
and y ∼ N(0, 0.1). The sample points form an obvious
tendency in the satisfiable space. Prob-MCSAT will first assign
x and then y. When comparing the three figures in each row
to each other (Fig. 3a - Fig. 3c, Fig. 3d - Fig. 3f, Fig. 3g -
Fig. 3i), the center of the cluster of sample points does not
change but presents a divergent state, which is caused by the
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Fig. 3: Normal distribution Prob-MCSAT with different pa-
rameters. The caption is the distribution that x follows.

gradual increase of the variance. When comparing the three
figures in each column to each other (Fig. 3a - Fig. 3g, Fig. 3b
- Fig. 3h, Fig. 3c - Fig. 3i), the closeness of the cluster remains
nearly the same, but the center has shifted, which is caused
by the change of the mean.

As mentioned above, assigning probabilities to variables can
help us to conduct different forms of sample tendencies in the
satisfiable space to a certain extent.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a special problem: PSMT, which
allows solving an SMT instance with variables conforming to
certain distributions. Based on MCSAT, we define Distribution
under Constraint and propose the Prob-MCSAT algorithm,
which combines the MCSAT algorithm with introducing the
probability of variables. The visualized examples show that
Prob-MCSAT can produce a clear trend in the results. This
method can also be explored further for test generation,
especially in scenarios with real-world backgrounds as they
usually have certain distribution characteristics.
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