
Static Analysis of Remote Procedure Call
in Java Programs

Baoquan Cui1,2,3,4, Rong Qu1,2,3,4, Zhen Tang1,2,3,4 and Jian Zhang1,2,3,4†
1State Key Laboratory of Computer Science, 2Key Laboratory of System Software (CAS)

3Institute of Software, Chinese Academy of Sciences (CAS), 4University of CAS, Beijing, China
Email: {cuibq, qurong, zj}@ios.ac.cn, tangzhen12@otcaix.iscas.ac.cn

Abstract—The Remote Procedure Call (RPC) is commonly
used for inter-process communications over network, allowing
a program to invoke a procedure in another address space, even
in another machine as if it were a local call. Its convenience
comes from encapsulating network communication. However,
for the same reason, it cannot be penetrated by current static
analyzers. Since the RPC based programs/frameworks play a
more important role in various domains, the static analysis of
RPC is significant and cannot be ignored.

We have observed that many of the existing RPC frame-
works/programs written in Java are based on explicit protocols,
which makes them possible to be modelled for static analysis.
The challenges are how to identify RPC operations in different
frameworks/programs and how to automatically establish rela-
tionships between clients and servers. In this paper, we propose a
novel approach, RPCBridge, which uses an adapter to unify the
most basic operations during the RPC process. It models the RPC
with logic rules in a straightforward and precise way based on its
semantics, performs points-to analysis and constructs RPC edges
in the call graph, making it more complete. The evaluation on
real-world large-scale Java programs based on 5 common RPC
frameworks shows that our approach can effectively capture the
operations of the RPC and construct critical links between clients
and servers, in which 60.1% are the true caller-callee pairs after
execution. Our approach is expected to bring significant benefits
(+24.3% leakage paths for the taint analyzer) for previously
incompletely modelled code with a very little memory and time
overhead, and connect the modules in a system, so that it can be
statically analyzed more holistically.

Index Terms—Remote Procedure Call (RPC), Static Analysis,
Points-to Analysis

I. INTRODUCTION

The Remote Procedure Call (RPC) is a common mechanism
for implementing network or process communication. When
a computer program executes a procedure or subroutine in
another address space (usually on another computer on a
shared network), the remote address space call is coded as a
local procedure call (LPC). This means that programmers write
essentially the same code without worrying about whether the
program is running locally or remotely, making the intricacies
of network communication transparent to developers. RPCs
generate over 95% of the application traffic in Google pro-
duction datacenters [1] and no single application dominates
the distribution of CPU cycles: the hottest one accounts for
about 10% of cycles [2].

†Corresponding Author.

However, the convenience of using RPC in programs brings
challenges to static analysis. It is difficult to construct a
connected edge in the call graph (CG) for the RPC invocation,
because it is usually difficult to figure out which method
is remotely responding to the RPC call after the parameter
serialization and network API invocation. A disconnected or
incomplete CG will lead to imprecise and unsound results
and hinder the static analysis of the program [3, 4]. Modern
static analyzers for Java programs are mature for the normal
points-to analysis [5–7], call graph construction and value flow
analysis, even for the dynamic features such as reflection and
dynamic proxy [8–13]. Unfortunately, they ignore the RPC and
give it far less attention, even though it is prevalent in practice
and becomes a valuable feature in network programming.

Traditionally, if a method invocation occurs via the network
communication, such as the Socket or HTTP, static analysis
will run into troubles, because (1) variables and objects are
difficult to trace after serialization and deserialization. The
type of an object may be changed after the data translation
without any inheritance relationship, and the object as data
may even be disrupted and reorganized; and (2) the local
caller method and the remote callee method may not be
linked, losing edges in the CG. This reduces the capability
of static analyzers. For example, if a variable is tainted on the
client and after being propagated via the RPC it is actually
sunk (sink point) on the remote server, then this leakage path
cannot be detected by the taint analyzer due to the unsound
value flow analysis and the incomplete CG. There are even
real exceptions [14, 15] in Hadoop [16], crashes [17, 18] in
gRPC [19], and possible memory leaks [20, 21] on the RPC
server which can only be triggered by the client.

However, for the RPC network communication, we have
observed that many existing RPC frameworks/programs are
based on explicit protocols, such as RMI [22], gRPC,
Thrift [23], Dubbo [24] and Hadoop (to be precise, RPC
in Hadoop is implemented by its module, Hadoop-common,
which will be ignored for the rest of this paper). They are
explicitly or implicitly guided by the specifications [25–31]
for RPC from the Request for Comments (RFC) Series [32].
This feature means that the client and server have a same
protocol that supports the implementation and use of the RPC.
Meanwhile, that makes it possible to perform static analysis
of (1) the variables and objects involved: because it forces
these objects and variables to be of the same type and (2) the

connection between the caller method and the callee method:
since they have the same method declarations (signatures) on
the server and the client as specified in the protocol.

In this paper, we propose a novel approach, RPCBridge, to
perform static analysis on the RPC programs written in Java,
connecting the client and the server in one system, to make the
further analysis more holistic. However, how to automatically
identify RPC operations in different frameworks/programs
is a challenge. Another challenge is how to overcome the
analysis of the complex network communication to establish a
relationship between the client and the server and to determine
which remote method is the actual one responding to a local
RPC. For the first challenge, we use an adapter to unify the
most basic operations during the RPC process, registration and
connection, to be compatible with different frameworks. We
then model the semantics of the operations under the RPC
mechanism by using formal representations. For the second
challenge, we build logical rules to automatically infer the
virtual points-to relationships between the variables/objects
from both the client and the server, to find the exact remote
response for a local RPC, based on the representations. It is
a virtual points-to relationship because these variables and
objects are not in the same address space or on the same
device actually. In the following sections, we will ignore this
virtual limitation and treat them as if they were all in the
same address space, just like the RPC mechanism. Points-to
analysis represents a points-to relation ptt ⊆ V ×O where V
is the variable set and O is the heap abstraction set, forming
the substrate of most inter-procedural static analysis. Thus,
our approach can benefit other static analyzers, since it is
a full capture of the behaviors on the object flow and the
method invocation under the RPC mechanism. In addition,
we provide auxiliary algorithms to persist the analysis result
back into the program file as one of the outputs, making
the use of RPCBridge non-intrusive for the further analysis.
Finally, we use experiments to demonstrate the effectiveness of
RPCBridge and the gains it can bring for the static analyzer,
and use a case study to illustrate its critical contribution to the
inter-module connection in a system.

In summary, our contributions are as follows:
• We propose RPCBridge, a novel static analysis approach

to connect the client and the server under the RPC programs
in one system. It introduces an adapter to unify RPC
operations in different frameworks/programs, and models
the semantics of the operations with formal representations.
With the representations, it conducts the points-to analy-
sis on the objects/variables during the RPC process and
constructs the RPC edge in the call graph. Based on the
analysis result, it provides persistence algorithms for the
further analysis.

• We evaluate RPCBridge on real-world large-scale open
source programs, and the experiment shows that it can effec-
tively capture the operations of the RPC in the programs, and
construct critical links between the clients and the servers,
benefiting taint analysis to connect the modules in a system
together and making the analysis no longer in isolation.

II. BACKGROUND

In this section, we will introduce the RPC mechanism
including how it works and use a motivating example to
demonstrate the difficulties it brings for traditional static
analyzers, and the opportunities we see for the static analysis.

A. Remote Procedure Call

The RPC mechanism is a powerful technique for con-
structing distributed or client-server (C/S) based applications,
allowing a program to invoke a procedure in another address
space as if it were a local call within the same address space.

A client and a server are deployed on different machines,
and a specified protocol is the cornerstone of collaboration
between them. 1 When the client starts a method invocation
(Calli), it invokes a client proxy, passing parameters after
serialization in the usual way. 2 Then client proxy passes the
message to the transport layer via Socket or HTTP, sending
it to the remote server. 3 On the server, a listener will
receive the call, and all calls will be pushed into the queue (or
pool) waiting for processing by a scheduler. 4 The scheduler
dequeues the call from the queue, and transfers the task to the
corresponding handler (handleri) according to the protocol
after deserialization. The handler is the desired server routine
and is executed as the regular procedure call. 5 When the
handler completes, its returned result will be transferred with
serialization as the response. 6 Finally, the client proxy
receives and deserializes the response and returns execution
output to the caller (Calli).

Although this workflow may seem complicated, due to the
support of the RPC mechanism, the data serialization and
deserialization, the network connection and determination of
the appropriate handler are standardized. That is to say, these
processes are transparent to the developers. All they have to
do is to focus on the protocol and its implementation, and call
the RPC method in the protocol as if it were a local invocation.

B. Motivating Example

We will show a simplified example of using the RPC in
Listing 1. In addition to instantiating the workflow above, it
serves to emphasize that while the practical implementation
of the RPC is sophisticated with data conversion and network
communication, its use is simple. Whereas the former hinders
a more comprehensive static analysis, the latter enlightens us
for further analysis.

Consider the code in Listing 1, it contains three parts.
• Protocol. The protocol (CalculationProtocol, lines

3-5) is agreed upon by the server and the client. It is the
prerequisite of the precise RPC communication between
the local machine and the remote one. The protocol is an
interface for calculation, declaring a method add(...) with
integer parameters (a and b) and the integer return type.

• Server Side. Firstly, the server must implement the protocol,
providing the specific execution of the task add(...) (lines 8-
14). There is a sink point in the implementation, SINK(a),
for the variable a (line 11). Then, the server initializes
itself with the IP address, instantiates a handler (handler)

2

Listing 1. A Motivating Example

1
2 0. Protocol between Server and Client

3 public interface CalculationProtocol { //
interface

4 public int add(int a, int b);
5 }
6
7 1. Server Side

8 // 1.1 Implement the protocol
9 public class CalculationImpl implements

CalculationProtocol{
10 public int add(int a, int b){
11 SINK(a); // sink point
12 return a + b;
13 }
14 }
15 // 1.2 Bind a handler for the protocol and

start
16 String address = "127.0.0.1";
17 Server server = CREATESERVER(address);
18 CalculationProtocol handler = new

CalculationImpl();
19 server.bind(CalculationProtocol.class,

handler);
20 server.startListen((args)->{
21 int a,b = DESERIALIZE(args);
22 int sum1 = handler.add(a, b); //execute "

add(a,b)" on Server
23 server.response(sum1);
24 });
25
26 2. Client Side

27 // 2.1 create a client and connect to the
server

28 Client client = CREATECLIENT();
29 String address = "127.0.0.1";
30 client.connect(address);
31 // 2.2 create an RPC caller instance
32 CalculationProtocol proxy = CREATERPCPROXY(

CalculationProtocol.class, (args) -> {
33 String serializeObject = SERIALIZE(args);
34 return client.send(serializeObject);
35 }}});
36 // 2.3 invoke an RPC method
37 int a = SOURCE(), b=5; // source point
38 int sum2 = proxy.add(a,b); //invoke "add(a,b)

" method in the client, and obtain the
sum from the server remotely.

for the protocol and binds them together (lines, 15-19).
Finally, it starts listening with a callback (simplified by
a lambda expression, the syntax sugar for an anonymous
function, denoted as (args)→{body}), which deserializes
the argument into the parameters for invoking the method
add(...) by the handler, and returns the calculation result
(sum1) to the requester (lines 20-24).

• Client Side. At the beginning, the client connects the server
after its instantiation (lines 27-30). Later, it creates a proxy
object which specifies the protocol to a proxy (proxy)
and the processing callback (also simplified by a lambda
expression) for the agent. When the callback is triggered,
it serializes the arguments as a message to be sent to the
remote server (lines 32-35). Then, the proxy invokes the
method add(...) with arguments (a and b) to perform the
computation task (lines 36-38) and obtains the result (sum2),

where variable a is derived from a source invocation (i.e.,
a = SOURCE(), source point, line 37), and the task will be
answered by the remote server after the handler execution
(lines 21-23).
For the traditional static analyzer, it can perform the analysis

on regular variables and objects, such as a, b, address and
so on, and even can construct an edge into the CG from
the proxy invocation (line 37) to the proxy callback (line
31) in the client [12]. However, the analysis comes to an
abrupt end when the object is serialized and deserialized
as data, especially during network communication. It makes
the analysis break down on the variables, handler, sum1,
sum2 and proxy. Subsequently, the client call and the server
response is disconnected, leaving the CG incomplete and
each module in the system to be analyzed in isolation. In
addition, an incomplete CG can cause false negatives and
false positives during static analysis, which is an implicit
impact. For example, there is a taint sink point (line 11) in the
implementation of the method add(int,int) and there is also a
source point for the actual argument a of the invocation of
method add(int,int), but there is not an edge in the call graph
to connect the method invocation and its real implementation,
thus a leak path will be missed by the taint analysis. In addition
to the taint analysis above, the mutual influence between the
server and the client is inevitable and can easily cause crashes
during the RPC. There are also some real bugs that can
only be triggered from the RPC client, such as “Unexpected
INTERNAL error propagated to application layer”, which
forces developers to retry pull operation polluting logs with
errors/warnings along the way [17] and “StatusException” [18]
in gRPC, repeated sub-directory creation during the RPC
“getContentSummary” [15] in Hadoop, and possible memory
leak [20, 21]. An isolated analysis of the client or the server
will miss these defects.

In fact, based on the knowledge of RPC mechanism, we
can easily observe that the variable proxy is the alias of the
variable handler, since the former one is the caller and the
latter one is the callee specified by the protocol agreed between
the client and the server. In the same way, the variables sum1

and sum2, are aliases of each other as well. Our goal is to
make the data serialization and deserialization, and network
communication transparent to the static analyzer, just as the
implementation of RPC is transparent to the developer. That
is, to construct a points-to relationship between the variable
proxy (line 32) and the object created in the location of the
instantiation for the variable handler (line 18). Thus, an edge
can be constructed, from the call site (line 38) to the actually
executed method (lines 10-13), making the CG more complete
and the analysis on the modules less isolated. In the next
section, we will show how to model the semantics of the RPC
and infer the relations automatically.

III. RPCBRIDGE

Figure 1 shows the overview of our approach, RPCBridge.
It takes the Java bytecode and an adapter as inputs. The adapter
is an abstraction of the RPC operations to unify behaviors

3

RPC Operations
• Protocol
• Register
• Connect

CH

CFG

CG

Java
Bytecode

Preprocessing

Adapter Extraction

Analysis
• Handshake
• RPC Edge Construction
• Assignment

Model

Representations
Inference Further Analysis

Instrumented
Jar Files

Visual Report

Pe
rs

is
te

nc
e

Fig. 1. Overview of RPCBridge

in RPC programs since different programs/frameworks have
different implementation stacks of the RPC mechanism. It
contains basic operations under the mechanism: registration
and connection as described by the RPC specification [25].
With the basic operations, we model their semantics via the
representations written by the language in Prolog style (Sec-
tion III-A), then perform inference on the points-to analysis
based on the representations (Section III-B). Finally, we output
the result into a visual HTML report and persist it back to the
input bytecode for further analysis (Section III-C).

A. Model

We use the language with the Prolog style for modelling
since it is mature and easy to read for static analysis with
a long history and provides a high-level abstraction of the
semantic view [33]. In particular, the Java Virtual Machine
(JVM) (SE 8 Edition) specification also uses it to describe
the formal clause [34]. Our analysis is built on the top of
the existing analysis approach, such as points-to analysis,
data flow analysis and so on. That means, we focus on the
extra analysis brought by RPC. Thus, in this section, we will
introduce (1) the basic existing representation briefly, (2) the
representation of modelling RPC invocation.

Basic Representation. At the beginning, the basic rule
“Z(a, c) ← X(a, b),Y(b, c)” means if the predicate X(a, b)
and the predicate Y(b, c) both are true, then the predicate
Z(a, c) is true can be inferred. The symbol “←” separates
pre-predicates and post-predicates, and both of them may have
more than one predicate. Figure 2 shows the meaning of the
basic representation as described in [35]. The preliminaries are
present as follows.

• v is a variable
• o is an object, the heap abstraction
• m is a method
• s is a signature of a method
• t is a type: a class or an interface
• n is a number
• i is an instruction call site, or the method invocation at

the call site

Taking the representation, CALLGRAPHEDGE(i: I, m: M), as
an example, it means the method m is invoked at the instruction
i. The representation, VARPOINTSTO(v: V, o: O), means a
variable v points to the object o. And, PARALISTSIZE(size:
N, s: S), computes the size of the parameter list of the method
with the signature s.

Representation for RPC Invocation. For the RPC in Java
programs, the protocol is usually an interface, and it may
have characteristics to be identified, such as inheriting from
a specific interface, or it may not, depending on the imple-
mentation. However, all RPC programs include the process
of registration and connection, which is determined by its
mechanism, no matter which platform they are implemented
on. We model their semantics by the representations, denoted
as PROTOCOLREGISTER(tproto: T, ohandler: O, ip: N) and
RPCCONNECTION(orpc: O, i: I, ip: N) as shown in Figure
3. The former one indicates that the server registers the
protocol type tproto with the IP address ip and binds the
corresponding handling object ohandler, and the latter one
means the connection to the server with the IP address ip
before the RPC call site i by the local proxy of the protocol
tproto. Although the implementation of these two semantics
on different platforms does not exactly match two specified
methods, we still use this description at a high-level abstraction
for convenience, since this is a mere engineering concern
(in the actual implementation of the approach, adapters for
different platforms are needed). Moreover, the IP address is
difficult to obtain during static analysis, we still retain it for
the scalability of our approach. In the actual implementation of
the approach, its value can be assigned to distinguish different
servers or to be ignored by assuming that there is only one
server.

The two representations recognize the protocol, its proxy
instance in the local client and its handler in the remote
server. The proxy instance is denoted as, REIFIEDRPCIN-
STANCE(tproto: T, v: V), representing a local RPC proxy
instance for the protocol type tproto, which can launch an
RPC invocation (since an interface cannot instantiate objects
directly, application of the protocol needs to be implemented
through a proxy). Then, the method invocation of the proxy
instance is an RPC, denoted as RPCCALLINFO(s: S, oproxy:
O, i: I). It is a specific sub-representation of CALL(i, s)
with the caller instance oproxy . To deal with the matching
between the local RPC method and the remotely executed
one, we introduce a computation SUBSIGNATURE(s: S, ssub:
S), to get the sub-signature of a method, removing the class
information in it while retaining the method declaration, e.g.,
the signature is “<CalculationProtocol: int add(int,int)>” and
its sub-signature is “int add(int,int)”.

B. Inference

Based on the basic representations and the ones for RPCs,
we can model the semantics of the RPC operations: register,
connection, local invocation and the remote handler. Over
this schema, the further analysis can be captured into three
logical rules: (1) the points-to analysis on the local proxy
variable and the remote handler (handshake); (2) the RPC
edge construction for CG (RPC edge construction); (3) the
assignment of the variables returned by the RPC call and
the handler (assignment), each of which will be explained
individually.

4

Representation Description
CALL(i: I, s: S) instruction i is a call to a method, whose signature is s

ACTUALARG(i: I, n: N, v: V) at invocation i, the n-th parameter is local variable v. For virtual calls, the variable this
is the first (0-th) element

FORMALPARAM(m: M, n: N, v: V) the variable v is the n-th formal parameter of the method m. The receiver is the
0-th parameter for virtual calls

ASSIGNRETVALUE(i: I, v: V) at invocation i, the value returned by the invocation is assigned to the local variable v
RETURNVALUE(m: M, v: V) the variable v is the one (assumed single) returned by the method m
OBJTYPE(o: O, t: T) the object o has the type t
LOOKUP(s: S, t: T, m: M) in type t, there exists a method m with the signature s; a sub-signature also works
VARPOINTSTO(v: V, o: O) a variable v points to the object o
PARALISTSIZE(size: N, s: S) the number size indicates the size of the parameter list of the method whose signature is s
CALLGRAPHEDGE(i: I, m: M) the method m is called at the instruction i

Fig. 2. Representation of Relations for the Program under Analysis and Their Meaning.

PROTOCOLREGISTER(tproto: T, ohandler: O, ip: N) register the protocol type tproto in the server with the IP address ip and
bind the corresponding handling object ohandler

RPCCONNECT(oproxy: O, ip: N) connect the server with the IP address ip by the RPC caller oproxy

REIFIEDRPCINSTANCE(tproto: T, v: V,) v is the variable representing the proxy instance of the protocol type
tproto, which can launch an RPC invocation

SUBSIGNATURE(s: S, ssub: S) the ssub is the sub-signature of the signature s, they have the same method
declaration except for the information of the class they belong to

RPCCALLINFO(s: S, vproxy: V, i: I) a call instruction i invokes an RPC method m, whose instance caller
is vproxy

RPCOBJECTHANDLER(oproxy: O, ohandler: O)
abstract RPC caller oproxy has its invocation handled remotely by the
corresponding method of the object ohandler on the server with
the same subsignature

Fig. 3. Representation of Relations for RPCs.

Rule 1: Handshake. We use the word “handshake” to
express how the client and server connect under the RPC
mechanism during static analysis, based on an agreed protocol.
The reasoning rule of the handshake is shown in Figure 4(a).
In words, the logic expressed by it says as follows:
(1) if there is a server register instruction, CALL(i,
“Server.register”), with three actual arguments: the agreed
protocol tproto, the handler of the protocol ohandler and
the IP address ip, in turn, marking the completion of
server registration of the protocol and the handler, i.e.,
PROTOCOLREGISTER(tproto, ohandler, ip); and
(2) similarly, if there is a client instruction to establish
connection, CALL(j, “Client.connect”), with two actual ar-
guments: a local proxy oproxy of the protocol instance, OB-
JTYPE(oproxy , tproto), and the same IP address ip as the
server above, marking a connection established by a client,
i.e., RPCCONNECTION(oproxy , j, ip) and a declaration
of a local proxy instance oproxy for the RPC protocol, i.e.,
REIFIEDRPCINSTANCE(tproto, oproxy); then
(3) a handshake has been completed: the invocation from the
local proxy oproxy will be handled by the remote handler
ohandler, i.e., RPCOBJECTHANDLER(oproxy, ohandler), and
obviously, the variable vproxy of the local proxy will point
to the object ohandler since it originally points to the object
oproxy , i.e., VARPOINTSTO(vproxy , ohandler).

Thus, the analysis takes a crucial step, connecting the
modules, the client and the server, together in a system. Again,
the methods, Server.register and Client.connect, may not be
matched exactly by the implementation in an RPC frame-

work/program. If not, their semantics may be implemented by
a combination of several methods, which should be handled
by an adapter for a specific framework during the engineering
of this approach.

Rule 2: RPC Edge Construction. With the
inference above, it can be known that if the predicate
VARPOINTSTO(vproxy, ohandler) is true, the variable vproxy
will start the RPC method invocation which will be handled
by the remote handler ohandler. So an edge can be added
into the CG, from the method invocation instruction by
the variable vproxy to the corresponding method of the
handler ohandler, which will be expressed in Figure 4(b).
This step is necessary since there may not be an explicit
class hierarchy (CH, inheritance or implementation) between
proxies and handlers. Figure 4(b) simulates the Dynamic
Method Dispatch in Java which enables the correct method to
be called at runtime, based on the actual class of the object:
when there is an RPC proxy instance vproxy calling its RPC
method at instruction i, i.e., the predicate RPCCALLINFO(s,
vproxy, i) is true, pointing to the remote handler ohandler,
an edge will be added into the CG from the call site i to
the method mhandler of the handler ohandler with the same
sub-signature as the method invoked at call site i, while each
actual argument at the location will be mapped to the formal
parameter of the handler method mhandler.

Rule 3: Assignment. Similarly, we build the points-to rela-
tionship between the variable returned by the RPC invocation
and the object output after the execution of the handler method,
when there is an edge in the CG, from a local RPC call to the

5

VARPOINTSTO(vproxy , ohandler),
RPCOBJECTHANDLER(oproxy, ohandler)
←−

REIFIEDRPCINSTANCE(tproto, vproxy)
RPCCONNECTION(oproxy , ip),
PROTOCOLREGISTER(tproto, ohandler , ip),
←−

CALL(i, “Server.register”), ACTUALARG(i, 1, tproto),
ACTUALARG(i, 2, ohandler), ACTUALARG(i, 3, ip),
CALL(j, “Client.connect”), ACTUALARG(j, 1, oproxy),
ACTUALARG(j, 2, ip), OBJTYPE(oproxy , tproto)
VARPOINTSTO(vproxy , oproxy),
VARPOINTSTO(vhandler , ohandler)

(a) Handshake

CALLGRAPHEDGE(i, mhandler), VARPOINTSTO(pn, on),
RPCCALLINFO(s, vproxy , i)
←−
REIFIEDRPCINSTANCE(tproto, vproxy)
VARPOINTSTO(vproxy , ohandler),
CALL(i, s = “the method invoked by the variable vproxy”),
SUBSIGNATURE(s, ssub), OBJTYPE(ohandler , t),
LOOKUP(ssub, t, mhandler), PARALISTSIZE(size, s),
EACH n from 0 to (size - 1)

FORMALPARAM(mhandler , n, pn)
ACTUALARG(i, n, vn), VARPOINTSTO(vn, on),

(b) RPC Edge Construction

VARPOINTSTO(r, o)
←−

CALLGRAPHEDGE(i, mhandler),
ASSIGNRETVALUE(i, r),
RETURNVAR(mhandler , rhandler),
VARPOINTS(rhandler , o)

(c) Assignment of Return Value

Fig. 4. Inference Rules

remote handler method, as shown in Figure 4(c).
The necessity of the steps of Rule 2 and Rule 3 (but not

the necessity of all their details) will be further discussed in
Section V.

C. Persistence

Usually, an RPC program is large in size, with numer-
ous classes, methods and statements, which is a particularly
complex software, making any analysis on it time-consuming.
Therefore, in addition to visualizing the HTML output of the
analysis results, we also provide algorithms for instrumenting
to save the RPC analysis results into the program file (i.e., the
bytecode in Java), avoiding duplicated computation in further
analysis.

Syntax. We use the syntax shown in Figure 5 to describe
how the result is embedded into the program file. For each
rule in it, the part below the horizontal line is the operation
command and the above one is the restriction. The basic rules,
Name, Type, Variable, Field, Return, Program, Expression,
Site, Class and Function, are easy to understand. For the op-
erations, Allocation and Store, we adopt the default meaning:
assigning values from right to left (V = new T or F = V). The
operations, Invocation, InsertExpr, InsertVar, InsertField
and InsertFun, are core commands for the persistence, to

Name: A∈(a...zA...Z$<>)∗
name(A) Type: name(T)

type(T)

Variable: type(T) name(V)
var(T, V) Field: type(T) name(V)

field(T, V)

Allocation: var(V) type(T)
instruction(alloc(V,T)) Return: var(R)

instruction(return(R))

Program: instruction(I) program(P)
program(I,P) Store: var(V) field(F)

instruction(store(F,V))

Expression: instruction(E)
instruction(exp(E)) Site: exp(E)

site(E)

Class: name(Name) type(Super) var(Field) fun(Sign)
class(Name,Super,Field,Sign)

Function: name(Sign) var(Arg) program(Body)
fun(Sign,Arg,Body)

Invocation: var(Base) name(Sign) var(Arg) var(Ret)
instruction(call(Base,Sign,Arg,Ret))

InsertExpr: exp(E1) fun(Sign) exp(E2)

insertExpr(Sign,E1,[after],site(E2))

InsertVar: fun(Sign) var(V)
insertVar(Sign,V) InsertField: class(Clz) field(F)

insertField(Clz,F)

InsertFun: class(Clz) fun(Sign)
insertFun(Clz,Sign) Annotation: exp(E)

annotation(E, [@]Msg)

Fig. 5. Syntax for RPC Instrumentation.

Algorithm 1: Instrumentation in Server
Input: handler, malloc, clz

1 // insert field
2 t ← type(handler);
3 location = alloc(handler);
4 line ← site(location);
5 f ← field(t, name(handler) + line);
6 insertField(clz, f);
7 // insert store
8 st ← store(f , handler);
9 insertExpr(malloc, st, “after”, location)

10 // insert getField method
11 body ← return(f);
12 m ← fun(“get”+f .name, NONE, body);
13 insertFun(clz, m);

produce an invocation, insert a local variable/expression into
a method, and insert a field/method into a class. Since we
stitch multiple modules together, it is not possible for one
module to accurately trace the creation of an object in another
module. Thus, the newly created fields and their get methods
are both static (with the modifier: “static”) to facilitate static
analysis according to the grammar of the Java language. In
particular, we define the operation Annotation to provide the
additional specification for further analysis by the analyzers
using annotations [36–40].

Instrumentation. With the syntax defined, we can perform
the instrumentation conveniently, which can be unfolded into
two aspects: the server side and the client side. Given an
RPC call from the client to the server, the local invocation
occurs in a method (called: local launch method, mll), with
an RPC invocation (denoted as rpc<m, args, ret>, containing
the method invoked, its arguments and the return variable), and
the remote handler object (handler) is allocated in the method
(malloc) of the class (clz) in the server.

The server must expose the object handler for the access by
the client via the interface. Algorithm 1 shows the process in
server, taking the handler, malloc and clz as inputs, to create
a field (lines 2-6) to store the object handler (line 8), which
is exposed via a get method (lines 11-13). We use the line
number of the handler’s allocation to avoid possible duplicate
name conflicts (lines 4-5).

6

Algorithm 2: Instrumentation in Client
Input: mll, rpc⟨m,args,ret⟩, handler, clz

1 t ← type(handler);
2 line ← site(alloc(handler));
3 fieldName ← name(handler + line);
4 localhandler ← var(t, “local”+ fieldName);
5 // localhandler = clz.getmHandlern()
6 load← call(clz, “get” + fieldName, NONE, localhandler)
7 insertExpr(mll, load, “after”, rpc)
8 // ret = proxy.m(args) → ret = localVar.m(args)
9 remote ← call(localhandler, rpc.m, rpc.args, rpc.ret)

10 insertExpr(mll, remote, “after”, load)
11 annotation(remote, “@RPCActual”)
12 annotation(rpc, “@RPCVirtual”)

Then the client can access the handler via the get method
of the intermediary field. Algorithm 2 shows how to localize
the field: to define a local variable as the return value of the
get method invocation (lines 1-6). Then it simulates a real
response from the remote handler: create an invocation by
the local handler with the RPC method and its arguments
and add it into the method too. At the end, it annotates the
RPC invocation with the annotation “@RPCActual” and the
simulated response with the “@RPCVirtual” as specifications.
Finally, a real channel appears in the code permanently to
connect the client and the server together for further analysis,
which is no longer isolated.

IV. EVALUATION

We have developed a prototype tool also named
RPCBridge based on our approach, which is built on
the top of Soot [5] and its intermediate representation
Jimple. The adapter is the mapping between real methods
in the RPC framework and virtual methods mentioned in
Section III-B. For simplicity, it ignores the value of the IP
variable, assuming that there is only one server. This does
not affect the scalability of our approach. The adapter for
Hadoop is shown in Figure 6. The purpose of our work is to
analyze the variables in the RPC process. The sensitivity of
our approach is consistent with the pre-analysis strategy. For
example, RPCBridge uses Soot and its points-to analysis
configuration is Spark, which is a precise analysis. CHA can
also be used, which is a sound and fast analysis but is not
precise. We investigate the following research questions for
RPCBridge:
• RQ1: How does RPCBridge support the static analysis of

the RPC on the real-world RPC programs?
• RQ2: How effective is RPCBridge? Is the RPC edge

constructed by RPCBridge the true caller-callee relation?
• RQ3: Can RPCBridge benefit the existing analyzer?

A. Setup

Benchmark. We present a micro-benchmark written in
Java based on Hadoop, gRPC, Dubbo, RMI and Thrift
RPC frameworks. For the Hadoop framework, we choose
Hadoop itself, HBase [41], Ozone [42], Phoenix [43],
Pravega [44] and Tez [45]. Hadoop is a platform that

1. Server
ms: the actual method in Hadoop. Its signature is
“⟨ ...ipc.RpcEngine: RPC.Server getServer(java.lang.Class,Java.lang.Object,...) ⟩”.
PROTOCOLREGISTER(tproto, ohandler , -)
←−

CALL(i,ms), ACTUALARG(i, 1, v0), ACTUALARG(i, 2, v1),
VARPOINTSTO(v0, tproto), VARPOINTSTO(v1, ohandler)

2. Client
mc: the actual method in Hadoop. Its signature is
“<...ipc.RPC: <T> T waitForProxy(java.lang.Class,long,...) >”.
RPCCONNECTION(oproxy , -)
←−

CALL(j,mc),
RETURNVAR(j, vproxy), VARPOINTSTO(vproxy , oproxy)

Fig. 6. Adapter for Hadoop Framework

allows for the distributed processing of large data sets across
clusters of computers using simple programming models. It
is one of the most popular systems for processing large
data sets [46–48]. Although Hadoop contains a HBase
module, we also take the independent HBase project with
latest version into account since they have different charac-
teristics in terms of storage, applicability, flexibility to read-
write, availability and scalability. For the gRPC framework,
we choose the benchmark [49] provided by its community,
representing the most common usage of gRPC. For the Dubbo
framework, we also choose the benchmark [50] provided by
its community, which contains 186 projects where 157 are
successfully compiled by us. For the RMI framework, we
have emailed the author of [51] asking whether the dataset
or the implementation is available, and the response is “this
project was 20 years ago and I do not have these bench-
marks or any implementation code”. Therefore we choose
Pax Exam [52], which contains 52 projects where 51 are
successfully compiled, jmeter [53], and Rmi-jndi [54]
which contains 12 projects where all of them are successfully
compiled. They have the most stars when we use the keywords
“extends java.rmi.Remote” and “extends Remote”, which is
an interface serving to identify interfaces whose methods may
be invoked from a non-local virtual machine, when searching
on grep.app with the filter written in Java. For the Thrift
framework, we choose Cassandra [55], which is an open
source NoSQL distributed database. There are fewer options
based on the gRPC and Thrift frameworks because cross-
language is one of their features, and our prototyping tool is
Java-oriented.

Table I lists the real-world, open source, large-scale pro-
grams using the frameworks with their versions. The version
denoted as “C(ID)” represents the version with a commit ID.
It also lists the numbers of classes (#Cls), the numbers of the
kilo line of code (#KLOC), and the forks and stars on GitHub.
All the following experiments run in a Linux device based on
Linux 5.4.0-148-generic with 56 cores (Intel (R) Xeon (R)
E5-2680) and 256G RAM. And the experiments are running
under the environment of JDK-1.8. The tool and the dataset
are public and available on the website1.

Metrics. For RQ1 and RQ2, the metrics are described as

1https://github.com/cuixiaoyiyi/RPCBridge

7

TABLE I
INFORMATION OF THE OPEN SOURCE PROGRAMS

Fr.W Project Version #Cls #KLOC #Fork #Star

H
ad

oo
p

hadoop 3.4.0 122K 4,284 8.7K 14.4K
hbase 3.0.0-beta-1 158K 5,949 3.3K 5.1K
ozone 1.4.0 170K 6,112 474 772

phoenix 2.5.0 193K 6,717 993 1K
pravega 0.13.0 95K 3,220 404 2K

tez 0.10.3 41K 1,498 415 463
gRPC-bench C(64ac792) 20K 817K 3.8K 11.3K

dubbo-bench (157) C(0ef8eae) 186K 6,575K 1.9K 2.2K

RMI
pax.exam (51) 4.13.5 20K 817K 100 84

jmeter 5.6.3 43K 1,618K 2.1K 8.1K
rmi-jndi (12) C(bc82c67) 5K 173K 48 306

Thrift cassandra 3.11.11 17K 585K 3.6K 8.6K

follows. #Pro represents the number of the creation of the
proxy instances in the client, which is the RPC connection,
RPCCONNECT(oproxy: O, -); #CP represents the number
of the protocols proxied in the client after deduplication; #H
represents the number of registered RPC handlers, i.e., PRO-
TOCOLREGISTER(tproto: T, ohandler: O, -); #SP represents
the number of the protocols instantiated in the server after
deduplication; #MP represents the intersection of protocols in
the client and the server; #CMP represents the covered ones
in #MP and its percentages (%) when running the project;
#RPC represents the number of RPCs launched by the client
via the proxies, which is RPCCALLINFO(s: S, vproxy: V,
i: I); #CRPC represents the covered ones in #RPC and its
percentages (%) when running the project; #+E represents
the number of the incremental RPC edges constructed by our
approach in Section III-B, which mean the successful hand-
shake between the client and the server; #CE represents the
covered ones in #+E and its percentages (%) when running the
project; AT & T represent the analysis time of RPCBridge
and the total time of the analysis including the preprocessing
time, respectively; the percentage in brackets represents the
proportion of analysis time of RPCBridge to total time.

B. RQ1: Support for the RPC Mechanism

Table II shows the analysis result of RPCBridge on the
benchmark. The number of proxies, client protocols, handlers
and matching protocols found in Hadoop is the largest among
the benchmark, and the number of RPC edges constructed
in it, is the largest as well. Ozone launches the most RPCs
(238) in its clients while Pravega consumes the most time
(11,607s). We have observed that the number of protocols
in the server always equals to the number of the matched
protocols. We think it is because that if there is a protocol
registered in the server, there must be an RPC proxy of
the protocol in the client, since every response must have a
request; otherwise, it is not, because the responding server
may be in the implementation of the top application provided
by the third party, excluded from the framework. The fact
that the number of added RPC edges (#+E) is larger than
the number of RPCs (#RPC) indicates that an RPC may have
multiple responses as we assume that there is only one server
in the evaluation. Totally, RPCBridge finds 263 matched
RPC protocols and constructs 2,578 RPC edges in CG. Its

Others

Yarn HDFS

MR
9

9 4

10103

64 659

Others

Yarn HDFS

MR
180

14 7

104

312

9

(a) Hadoop

Others

Yarn HDFS

MR
9

9 4

10103

64 659

Others

Yarn HDFS

MR
180

14 7

104

312

9

(b) HBase

Fig. 7. RPC Interaction between Modules in (a) Hadoop and (b) HBase,
Connected by RPCBridge.

analysis time is only a really small part of the total time
(Maximum: 0.31% in HBase, Minimum: 0.03% in Pravega,
on Average: 0.12%).

Answer to RQ1. Our approach can effectively find RPC
protocols (263) and construct RPC edges (2,578) in CG in real-
world large-scale RPC programs with low time consumption.

Case Study. We will use a case study from Hadoop and
HBase to illustrate the connectivity of RPCBridge for RPC
programs. Simply, we divide them into four modules, MR (the
set of classes with a prefix “org.apache.hadoop.mapreduce”),
HDFS (prefix “org.apache.hadoop.hdfs”), Yarn (prefix “org.
apache.hadoop.yarn”), and Others (the remaining classes)
which can be seen as the top application based on the other
three modules. And assume that the modules run on different
machines with different addresses. Figure 7 shows the RPC
interaction between the modules, generated automatically by
our tool. The edges in it represent the RPC calls and their
responses, and the number on the edge represents the number
of RPC call/response pairs. The spin node represents the
RPC call that occurs inside it: in fact, it should be split and
deployed on different machines. Totally, there are 768 RPCs
and responses in the Hadoop system and 536 in the HBase
system, connecting their modules together. RPCBridge con-
structs the critical invocations between modules for static
analysis, making the CG of the RPC system a connected one to
support further analysis. But in HBase, it needs to spend more
attention on all the interaction with the other three modules.

C. RQ2: Effectiveness
To the best of our knowledge, there is no labeled dataset

that allows us to calculate false positives and false neg-
atives. To evaluate the effectiveness of RPCBridge, we
use Soot for instrumentation to observe whether the RPC
protocol and the RPC edge constructed by RPCBridge is
the true caller-callee. We execute the programs and their test
cases. Table II shows the coverage result after execution. For
those projects, gRPC-bench, dubbo-bench, Pax Exam,
jmeter and Rmi-jndi, the RPCs in them can be covered
with almost 100% as their entrances are relatively simple.
Although it looks like that there are many protocols and
RPCs in dubbo-bench, Pax Exam and Rmi-jndi, they
contain many subprojects as mentioned before, each of which
is relatively simple, with a relatively obvious entry, server
and client. For the very complex Hadoop-based projects,
the coverage of the matched protocols ranges from 53.6%
(HBase) to 60.0% (Phoenix) and the coverage of RPCs

8

TABLE II
RPC OPERATIONS FOUND BY OUR APPROACH

Project #Pro #CP #H #SP #MP #CMP #RPC #CRPC #+E #CE T (s) AT (s)
hadoop 111 53 97 37 37 20(59.5%) 171 121(70.4%) 768 535(69.7%) 6.3 (0.07%) 9,332
hbase 72 43 56 28 28 15(53.6%) 184 95(51.6%) 536 279(52.1%) 9.8 (0.31%) 3,155
ozone 76 35 55 35 35 19(54.3%) 238 142(59.7%) 670 362(54.0%) 8.9 (0.27%) 3,309

phoenix 30 27 24 20 20 12(60.0%) 92 50(54.3%) 94 50(53.4%) 8.2 (0.27%) 2,997
pravega 31 20 5 4 4 4(100%) 17 17(100%) 19 17(89.5%) 3.3 (0.03%) 11,607

tez 58 42 43 27 27 15(55.6%) 111 61(55.0%) 187 101(54.0%) 5.8 (0.17%) 3,447
gRPC-bench 5 5 5 5 5 5(100%) 18 16(88.9%) 18 16(88.9%) 1.3 (0.86%) 152
dubbo-bench 62 62 62 62 62 48(77.4%) 173 121(69.8%) 173 121(69.8%) 50.8 (0.41%) 12,335

pax exam 24 24 28 22 22 9(40.9%) 47 20(42.6%) 66 32(48.5%) 3.8 (0.22%) 1,723
jmeter 1 1 1 1 1 1(100%) 3 2(66.7%) 3 2(66.7%) 1.8 (0.56%) 324

rmi-jndi 17 17 17 17 17 13 (76.5%) 17 13(76.5%) 17 13(76.5%) 3.2 (0.17%) 435
cassandra 5 5 5 5 5 5(100%) 27 21(77.8%) 27 21(77.8%) 3.1 (0.25%) 1,236

Total 492 334 398 263 263 166 (63.1%) 1,098 679 (61.8%) 2,578 1,549 (60.1%) 106.3 (0.21%) 50,052

ranges from 54.3% (Phoenix) to 70.4% (Hadoop). Totally,
on average, the matched protocols are covered by 63.1%, the
RPCs are covered by 61.8% and the RPC edge constructed
by RPCBridge are 60.8%. RPCs cannot be covered does
not mean that our results are incorrect as many RPCs require
complex pre-conditions to be triggered. For those protocols,
RPCs detected and the RPC edge constructed by RPCBridge
which have not been covered, to further explore whether they
can be covered, it is necessary to understand more deeply and
carefully design more complicated trigger conditions for these
systems, which is beyond the scope of this paper.

Due to the size of the code, it is indeed difficult to evaluate
the false positives. All protocols found by RPCBridge in four
projects, Pravega, gRPC-bench, jmeter and cassandra
are covered. There are no false positives in them. We check
the result in Hadoop. Hadoop prefers to use RPC based on
ProtoBuf serialization/deserialization technology instead of
Writeable as the former is more efficient. RPCBridge
has found 37 matched protocols, where 20 are coverd. Among
them, 3 are Writeable protocols which are from test cases.
We retrieve a total of 38 Writeable protocols through
text search. Assuming that all uncovered protocols are false
positives, the upper bound of false positives of RPCBridge is
about 23.6% ((37-20)/(37+38-3)=23.6%). We think that result
of protocols on Hadoop are representative due to its code size
and complexity. False positives may be caused by inaccurate
pre-step of points-to analysis or we cannot statically infer
IP addresses. Introducing constraint solving techniques and
configuration file analysis can reduce them in the future. The
false negatives will be discussed in Section V.

Answer to RQ2. About 60% of the protocols and RPCs
detected by RPCBridge are actively used, and also about
60% of the RPC edges constructed by RPCBridge can be
covered by execution, indicating that they are the true caller-
callee relationship.

D. RQ3: Benefits for the Existing Analyzer

To answer RQ3, we perform the taint analysis with
FlowDroid on the Hadoop benchmark which is more
complex and has a larger size than others, and compare

TABLE III
BENEFITS AND OVERHEAD FOR TAINT ANALYSIS

Project Leakage Path(∆) Memory(∆) (GB) Time(∆) (s)
hadoop 12 (+4) 16.1 (+0.08) 21 (+4)
hbase 7 (+1) 9.3 (+0.04) 15 (+2)
ozone 11 (+2) 20.7 (+0.05) 28 (+4)

phoenix 3 (0) 25.4 (+0.03) 31 (+2)
pravega - - TO

tez 4 (+2) 10.6 (+0.06) 13 (+1)
Total 37 (+9) 82.1 (+0.26) 108 (+13)

the analysis result of the source bytecode with the bytecode
instrumented after building the RPC edges. And the timeout
is set to 5 hours. For the comparison, we record three metrics.
The comparison results are shown in Table III. The symbol
‘∆’ (also the number in brackets) in each column represents
the change after the RPC connection. The data in Pravega
is not recorded due to timeout. More leakage paths have been
found in all projects except for Phoenix after the RPC
connection. Totally, there are 9 (9/37=24.3%) leakage paths
newly contributed by RPCBridge for the RPC connection.
The memory overhead (+0.26%) of RPCBridge can be
ignored. The increase in time consumption (13/108=12.1%
on average) is more obvious compared to increase in memory
consumption. The increase in time consumption proves that
our connection for RPC explicitly impact taint analysis during
the taint propagation exploration, as more nodes are connected
and more paths are explored. That is to say, RPCBridge
provides more paths for static analyzers to support further
analysis.

Answer to RQ3. Our approach is expected to bring sig-
nificant benefits (+24.3%) for the existing analysis tool, and
introduces an increase in memory consumption (0.3%) and
time consumption (12.1%).

V. THREAT TO VALIDITY

Our prototype tool is based on Soot, which, although
powerful, currently supports processing bytecode versions
lower than JDK 17, limiting its use. When running Soot,
sometimes it will have some exceptions when parsing bytecode

9

or constructing CG, which may affect the reproduction of
experimental results. The adapter used in the experiment may
not represent complete cases of creation and registration,
although some of these methods are specified as: “Get a proxy
connection to a remote server” [56] and “Construct a server
for a protocol implementation instance” [57]. In addtion, the
configuration of prepoints-to algorithm will affect the accuracy
of our approach, causing false positives or negatives. Further-
more, our work focuses on modelling the typical semantics
of the RPC operations (Unary RPC, where the client sends a
single request and gets back a single response), rather than all
semantics of the operations from all frameworks, which may
cause false negatives. For example, the framework gRPC [19]
provides stream operations (Server streaming RPC, Client
streaming RPC and Bidirectional streaming RPC) [58]. Our
approach can model the semantics but additional adaptation
may be required when constructing the call edge, since the
request and response are not one-time, i.e.,not a Unary RPC,
but are encapsulated in the stream: when a message arrives via
the stream, a listener is needed to process it. The construction
of the call edges becomes more complicated when using the
Bidirectional streaming RPC because “Client- and server-side
stream processing is application specific. Since the two streams
are independent, the client and server can read and write
messages in any order.” [58]. This is why the steps of Rule 2
and Rule 3 in Section III-B are necessary, even though their
details do not represent all situations.

VI. RELATED WORK

We present related work as follows: one is on points-to
analysis of various features in Java programs, and another is
on the log analysis and RPC customization.

A. Points-to Analysis for Java Programs

The Java language has some dynamic features: some of
them come from the language itself, such as reflection, dy-
namic proxy and generic; others come from the powerful
framework, such as dependency injection and aspect-oriented
programming, which are core technologies in the Spring
framework. Some efforts have been made to further support
static analysis for these features. Analysis for reflection is
performed based on string constant searching, class iden-
tification, argument type matching, etc., either statically or
dynamically [8–11, 59–62]. Jasmine is developed for static
analysis to overcome the handicaps: dependency injection and
aspect-oriented programming, in the Spring programs [63].
Fourtounis et al. model the semantics of dynamic proxy
to improve the soundness of the static analysis [12]. Li et
al. introduce generic-sensitive pointer analysis, which can
serve as crucial context elements for effectively distinguishing
contexts in Java programs [64]. He et al. propose IFDS-
based, Container-Usage-Pattern-based and library summary-
based approaches to make the points-to analysis faster, more
fine-grained and more precise [65–69]. All of these works
contribute to points-to analysis in terms of certain features, as
does our work. Compared with them, we focus on the dynamic

feature of the generic RPC in Java programs, usually based on
a protocol, to overcome the challenges in static analysis for
network communication and interaction on different devices.

Sharp and Rountev try to establish the points-to relationship
for RMI-based Java applications [51], providing a flow- and
context-insensitive points-to analysis for such applications.
One of the issues of RMI is the high latency, and its most-
common simple solution is to cache objects at the client which
could lead to further issues such as distortion of consistency,
blocking the widespread use of RMI [70]. Our work is a more
general approach that targets existing RPC frameworks/pro-
grams through adapters under the RPC specification, including
but not limited to RMI-, Hadoop-, and gRPC-based programs.
In addition, our approach is based on existing mature points-
to analysis, therefore it can be flow-sensitive, context-sensitive
and even object-sensitive.

B. Log Analysis and RPC Customization

Due to the scale of the software and the obstacle that net-
work communication brings to static analysis, dynamic anal-
ysis is an effective choice for program analysis with network
communication. Many research works focus on log analysis,
via log instrumentation, collection, abstraction and mining, for
monitoring and failure diagnosis. For example, lprof [71]
and Pensieve [72] try to connect modules of the distributed
system based on log analysis: the former is a profiling tool that
automatically reconstructs the execution flow of each request
in a distributed application and the latter is a tool capable
of reconstructing near-minimal failure reproduction steps from
log files and system bytecode, automatically simulating failure
localizaition of artificial debugging. A survey for log analysis
has figured out log analyzers suffer from the ever-increasing
volume, variety, and velocity of logs produced by modern
software, and suspicious logs are often overwhelmed by logs
generated during software normal executions, making them
labor-intensive and error-prone [73]. Our approach can avoid
the above problems while covering the analysis of code that
is not executed or does not generate logs. Meanwhile, it
does not execute the program under test, with very little
dependency on the environment, deployment and resources.
On the other hand, it may introduce false positives due to
inaccurate modelling or different choice of strategies during
the points-to analysis.

The RFC Series [32] contains technical and organizational
documents about the Internet, including the specifications for
RPC over the past two decades [25–31]. The RPC specifica-
tions actively promote the development and implementation
of RPC and become part of the de facto standard, which
is the convention followed by the RPC frameworks and the
infrastructure for our work model. As mentioned in Section V,
our modelling for RPC under that case can be reused but the
construction of the call edge should be more careful when
messages are delivered in any order [58] or by remote direct
memory access (RDMA) [26, 29, 30]. Our approach requires
adaptation when it comes to some customization of RPC [74–
76]. Moreover, our experiments lead us to believe that our

10

approach can also benefit vulnerability detection, security
concern and so on during RPC process [77–83].

VII. CONCLUSION

RPC is widely used in real-world enterprise large-scale
programs, allowing a program to invoke a remote procedure as
if it were a local call. Although the RPC programs/frameworks
play an increasingly important role in various domains, includ-
ing telecommunications, distributed systems, cloud computing,
and artificial intelligence, to the best of our knowledge, there
is little work on their static analysis in nearly two decades.

In this paper, we propose a novel approach to model the
semantics of the RPC operations, and perform reasoning for
points-to analysis between the client variable and the object in
the server based on the logical rules to connect the modules
together and persist the analysis result for further reuse. We
evaluate our approach on real-world large-scale programs,
and the experiment shows that it can connect effectively
different modules together in one system and provide signif-
icant benefits to upper-level analyzers. In the future, we will
apply our approach to more RPC programs/frameworks written
in different languages and investigate the stream operations
during the RPC process.

ACKNOWLEDGEMENT

We would like to thank to Miaomiao Wang, Wensheng Dou
and Yajun Zhu for comments on earlier drafts of this paper, and
to the anonymous reviewers for their helpful comments and
suggestions. This work is supported by the National Natural
Science Foundation of China (NSFC) under grant number
62132020.

REFERENCES

[1] Yiwen Zhang and Gautam Kumar and Nandita Dukkipati and
Xian Wu and Priyaranjan Jha and Mosharaf Chowdhury and Amin
Vahdat, “Aequitas: admission control for performance-critical RPCs in
datacenters,” in SIGCOMM ’22: ACM SIGCOMM 2022 Conference,
Amsterdam, The Netherlands, August 22 - 26, 2022. ACM, 2022, pp.
1–18. [Online]. Available: https://doi.org/10.1145/3544216.3544271

[2] S. Kanev, J. P. Darago, K. M. Hazelwood, P. Ranganathan, T. Moseley,
G. Wei, and D. M. Brooks, “Profiling a warehouse-scale computer,” in
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, Portland, OR, USA, June 13-17, 2015. ACM, 2015, pp.
158–169. [Online]. Available: https://doi.org/10.1145/2749469.2750392

[3] D. Helm, S. Keidel, A. Kampkötter, J. Düsing, T. Roth, B. Hermann,
and M. Mezini, “Total Recall? How Good Are Static Call Graphs
Really?” in Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2024, Vienna,
Austria, September 16-20, 2024. ACM, 2024, pp. 112–123. [Online].
Available: https://doi.org/10.1145/3650212.3652114

[4] J. Samhi, R. Just, T. F. Bissyandé, M. D. Ernst, and J. Klein, “Call Graph
Soundness in Android Static Analysis,” in Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2024, Vienna, Austria, September 16-20, 2024. ACM, 2024, pp.
945–957. [Online]. Available: https://doi.org/10.1145/3650212.3680333

[5] “Soot - A framework for analyzing and transforming Java and Android
applications,” https://soot-oss.github.io/soot.

[6] “WALA UserGuide: Pointer Analysis,” http://wala.sourceforge.net/wiki/
index.php/UserGuide:PointerAnalysis.

[7] “Doop - Framework for Java Pointer and Taint Analysis,” https://github.
com/plast-lab/doop.

[8] Y. Li, T. Tan, and J. Xue, “Understanding and Analyzing Java
Reflection,” ACM Trans. Softw. Eng. Methodol., vol. 28, no. 2, pp.
7:1–7:50, 2019. [Online]. Available: https://doi.org/10.1145/3295739

[9] V. B. Livshits, J. Whaley, and M. S. Lam, “Reflection Analysis for Java,”
in Programming Languages and Systems, Third Asian Symposium,
APLAS 2005, Tsukuba, Japan, November 2-5, 2005, Proceedings, ser.
Lecture Notes in Computer Science, vol. 3780. Springer, 2005, pp.
139–160. [Online]. Available: https://doi.org/10.1007/11575467 11

[10] D. Landman, A. Serebrenik, and J. J. Vinju, “Challenges for
static analysis of Java reflection: literature review and empirical
study,” in Proceedings of the 39th International Conference on
Software Engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017. IEEE / ACM, 2017, pp. 507–518. [Online]. Available:
https://doi.org/10.1109/ICSE.2017.53

[11] Y. Smaragdakis, G. Balatsouras, G. Kastrinis, and M. Bravenboer, “More
Sound Static Handling of Java Reflection,” in Programming Languages
and Systems - 13th Asian Symposium, APLAS 2015, Pohang, South
Korea, November 30 - December 2, 2015, Proceedings, ser. Lecture
Notes in Computer Science, vol. 9458. Springer, 2015, pp. 485–503.
[Online]. Available: https://doi.org/10.1007/978-3-319-26529-2 26

[12] G. Fourtounis, G. Kastrinis, and Y. Smaragdakis, “Static analysis of
Java dynamic proxies,” in Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA
2018, Amsterdam, The Netherlands, July 16-21, 2018. ACM, 2018, pp.
209–220. [Online]. Available: https://doi.org/10.1145/3213846.3213864

[13] B. Livshits, “Improving Software Security with Precise Static and
Runtime Analysis,” Ph.D. Dissertation. Stanford University, 2006.

[14] “Hadoop client unable to relogin because a remote DataN-
ode has an incorrect krb5.conf,” https://issues.apache.org/jira/browse/
HADOOP-15378.

[15] “RBF: getContentSummary RPC compute sub-directory repeatedly,”
https://issues.apache.org/jira/browse/HDFS-16382.

[16] “Apache Hadoop, open-source software for reliable, scalable, distributed
computing,” https://hadoop.apache.org.

[17] “Unexpected INTERNAL error propagated to application layer,” https:
//github.com/grpc/grpc-java/issues/9289.

[18] “StatusException: UNAVAILABLE on client when maxConnectionAge
is set on server,” https://github.com/grpc/grpc-java/issues/9566.

[19] “A high performance, open source universal RPC framework,” https:
//grpc.io.

[20] “Possible memory leak in rpc layer,” https://issues.apache.org/jira/
browse/DRILL-4266.

[21] “Flatten query leads to out of memory in RPC layer,” https://issues.
apache.org/jira/browse/DRILL-6235.

[22] “RMI - The Java Remote Method Invocation (RMI) system allows an
object running in one Java virtual machine to invoke methods on an
object running in another Java virtual machine,” https://docs.oracle.com/
Javase/tutorial/rmi/.

[23] “Thrift, a lightweight, language-independent software stack for point-
to-point RPC implementation,” https://thrift.apache.org.

[24] “Apache Dubbo, a high-performance, Java based, open source RPC
framework,” https://cn.dubbo.apache.org/en/.

[25] R. Thurlow, “RPC: Remote Procedure Call Protocol Specification
Version 2,” RFC, vol. 5531, pp. 1–63, 2009. [Online]. Available:
https://doi.org/10.17487/RFC5531

[26] T. Talpey and B. Callaghan, “Remote Direct Memory Access Transport
for Remote Procedure Call,” RFC, vol. 5666, pp. 1–34, 2010. [Online].
Available: https://doi.org/10.17487/RFC5666

[27] B. Lengyel and M. Björklund, “Partial Lock Remote Procedure Call
(RPC) for NETCONF,” RFC, vol. 5717, pp. 1–23, 2009. [Online].
Available: https://doi.org/10.17487/RFC5717

[28] A. Adamson and N. Williams, “Remote Procedure Call (RPC) Security
Version 3,” RFC, vol. 7861, pp. 1–26, 2016. [Online]. Available:
https://doi.org/10.17487/RFC7861

[29] C. Lever, W. A. Simpson, and T. Talpey, “Remote Direct Memory
Access Transport for Remote Procedure Call Version 1,” RFC, vol. 8166,
pp. 1–55, 2017. [Online]. Available: https://doi.org/10.17487/RFC8166

[30] C. Lever, “Bidirectional Remote Procedure Call on RPC-over-RDMA
Transports,” RFC, vol. 8167, pp. 1–13, 2017. [Online]. Available:
https://doi.org/10.17487/RFC8167

[31] T. Myklebust and C. Lever, “Towards Remote Procedure Call
Encryption by Default,” RFC, vol. 9289, pp. 1–21, 2022. [Online].
Available: https://doi.org/10.17487/RFC9289

[32] “RFC Editor,” https://www.rfc-editor.org/.
[33] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots,

M. Carbin, and C. Unkel, “Context-sensitive program analysis as
database queries,” in Proceedings of the Twenty-fourth ACM SIGACT-

11

SIGMOD-SIGART Symposium on Principles of Database Systems, June
13-15, 2005, Baltimore, Maryland, USA. ACM, 2005, pp. 1–12.
[Online]. Available: https://doi.org/10.1145/1065167.1065169

[34] “The Java® Virtual Machine Specification (Java SE 8 Edition),” https:
//docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.10.1.

[35] Y. Smaragdakis and G. Balatsouras, “Pointer Analysis,” Found. Trends
Program. Lang., vol. 2, no. 1, pp. 1–69, 2015. [Online]. Available:
https://doi.org/10.1561/2500000014

[36] “PMD is an extensible cross-language static code analyzer,” https://pmd.
github.io/.

[37] D. Tang, A. Plsek, and J. Vitek, “Static checking of safety critical
Java annotations,” in Proceedings of the 8th International Workshop on
Java Technologies for Real-Time and Embedded Systems, JTRES 2010,
Prague, Czech Republic, August 19-21, 2010, ser. ACM International
Conference Proceeding Series. ACM, 2010, pp. 148–154. [Online].
Available: https://doi.org/10.1145/1850771.1850792

[38] W. Pugh, “JSR 305: Annotations for Software Defect Detection,” https:
//jcp.org/en/jsr/detail?id=305.

[39] P. Pinheiro, J. C. Viana, M. Ribeiro, L. Fernandes, F. C.
Ferrari, R. Gheyi, and B. Fonseca, “Mutating code annotations:
An empirical evaluation on Java and C# programs,” Sci. Comput.
Program., vol. 191, p. 102418, 2020. [Online]. Available: https:
//doi.org/10.1016/j.scico.2020.102418

[40] N. Peru, “Annotation on array type should be properly handled,” https:
//sonarsource.atlassian.net/browse/SONARJAVA-1420.

[41] “Apache HBase, an open-source, distributed, versioned, column-oriented
store modeled after Google’ Bigtable,” https://github.com/apache/hbase.

[42] “Ozone, a scalable, redundant, and distributed object store for Hadoop
and Cloud-native environments,” https://github.com/apache/ozone.

[43] “Apache Phoenix, a SQL skin over HBase delivered as a client-
embedded JDBC driver targeting low latency queries over HBase data,”
https://github.com/apache/phoenix.

[44] “APravega, an open source distributed storage service implementing
Streams,” https://github.com/pravega/pravega.

[45] “Apache Tez, a generic data-processing pipeline engine envisioned as a
low-level engine for higher abstractions,” https://github.com/apache/tez.

[46] Y. Gu and R. L. Grossman, “Toward Efficient and Simplified
Distributed Data Intensive Computing,” IEEE Trans. Parallel Distributed
Syst., vol. 22, no. 6, pp. 974–984, 2011. [Online]. Available:
https://doi.org/10.1109/TPDS.2011.67

[47] S. Lee, S. Shakya, R. Sunderraman, and S. Belkasim, “Real
Time Micro-blog Summarization Based on Hadoop/HBase,” in 2013
IEEE/WIC/ACM International Conferences on Web Intelligence and
Intelligent Agent Technology, Atlanta, Georgia, USA, 17-20 November
2013, Workshop Proceedings. IEEE Computer Society, 2013, pp.
46–49. [Online]. Available: https://doi.org/10.1109/WI-IAT.2013.148

[48] A. Zarei, S. Safari, M. Ahmadi, and F. Mardukhi, “Past, Present
and Future of Hadoop: A Survey,” CoRR, vol. abs/2202.13293, 2022.
[Online]. Available: https://arxiv.org/abs/2202.13293

[49] “The ”Queries Per Second Benchmark” allows you to get a quick
overview of the throughput and latency characteristics of grpc.” https:
//github.com/grpc/grpc-java/tree/master/benchmarks.

[50] “Samples for Apache Dubbo.” https://github.com/apache/
dubbo-samples.

[51] M. Sharp and A. Rountev, “Static Analysis of Object References in
RMI-Based Java Software,” IEEE Trans. Software Eng., vol. 32, no. 9,
pp. 664–681, 2006. [Online]. Available: https://doi.org/10.1109/TSE.
2006.93

[52] “Pax Exam, a testing framework for OSGi.” https://github.com/ops4j/
org.ops4j.pax.exam2.

[53] “Apache JMeter open-source load testing tool for analyzing and measur-
ing the performance of a variety of services.” https://github.com/apache/
jmeter.

[54] “Demos for rmi, jndi, ldap, jrmp,jmx and jms.” https://github.com/
longofo/rmi-jndi-ldap-jrmp-jmx-jms.

[55] “Apache Cassandra, a highly-scalable partitioned row store.” https:
//github.com/apache/cassandra.

[56] “Get a protocol proxy that contains a proxy connection to
a remote server,” https://github.com/apache/hadoop/blob/trunk/
hadoop-common-project/hadoop-common/src/main/java/org/apache/
hadoop/ipc/RPC.java#L644.

[57] “Construct a server for a protocol implementation instance,”
https://github.com/apache/hadoop/blob/trunk/hadoop-common-project/
hadoop-common/src/main/java/org/apache/hadoop/ipc/RpcEngine.java#

L122.
[58] “An introduction to key gRPC concepts, with an overview of gRPC

architecture and RPC life cycle,” https://grpc.io/docs/what-is-grpc/
core-concepts/.

[59] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini,
“Taming reflection: Aiding static analysis in the presence of reflection
and custom class loaders,” in Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu
, HI, USA, May 21-28, 2011. ACM, 2011, pp. 241–250. [Online].
Available: https://doi.org/10.1145/1985793.1985827

[60] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting run-
time values in android applications that feature anti-analysis techniques,”
in 23rd Annual Network and Distributed System Security Symposium,
NDSS 2016, San Diego, California, USA, February 21-24, 2016. The
Internet Society, 2016.

[61] Y. Zhang, Y. Li, T. Tan, and J. Xue, “Ripple: Reflection analysis
for Android apps in incomplete information environments,” Softw.
Pract. Exp., vol. 48, no. 8, pp. 1419–1437, 2018. [Online]. Available:
https://doi.org/10.1002/spe.2577

[62] M. Hirzel, D. von Dincklage, A. Diwan, and M. Hind, “Fast online
pointer analysis,” ACM Trans. Program. Lang. Syst., vol. 29, no. 2, p. 11,
2007. [Online]. Available: https://doi.org/10.1145/1216374.1216379

[63] M. Chen, T. Tu, H. Zhang, Q. Wen, and W. Wang, “Jasmine: A Static
Analysis Framework for Spring Core Technologies,” in 37th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2022, Rochester, MI, USA, October 10-14, 2022. ACM, 2022, pp. 60:1–
60:13. [Online]. Available: https://doi.org/10.1145/3551349.3556910

[64] H. Li, T. Tan, Y. Li, J. Lu, H. Meng, L. Cao, Y. Huang, L. Li, L. Gao,
P. Di, L. Lin, and C. Cui, “Generic Sensitivity: Generics-Guided
Context Sensitivity for Pointer Analysis,” IEEE Trans. Software
Eng., vol. 50, no. 5, pp. 1144–1162, 2024. [Online]. Available:
https://doi.org/10.1109/TSE.2024.3377645

[65] D. He, Y. Gui, W. Li, Y. Tao, C. Zou, Y. Sui, and J. Xue,
“A Container-Usage-Pattern-Based Context Debloating Approach for
Object-Sensitive Pointer Analysis,” Proc. ACM Program. Lang.,
vol. 7, no. OOPSLA2, pp. 971–1000, 2023. [Online]. Available:
https://doi.org/10.1145/3622832

[66] D. He, J. Lu, and J. Xue, “IFDS-based Context Debloating
for Object-Sensitive Pointer Analysis,” ACM Trans. Softw. Eng.
Methodol., vol. 32, no. 4, pp. 101:1–101:44, 2023. [Online]. Available:
https://doi.org/10.1145/3579641

[67] D. He, J. Lu, Y. Gao, and J. Xue, “Selecting Context-Sensitivity
Modularly for Accelerating Object-Sensitive Pointer Analysis,” IEEE
Trans. Software Eng., vol. 49, no. 2, pp. 719–742, 2023. [Online].
Available: https://doi.org/10.1109/TSE.2022.3162236

[68] J. Lu, D. He, W. Li, Y. Gao, and J. Xue, “Automatic Generation
and Reuse of Precise Library Summaries for Object-Sensitive
Pointer Analysis,” in 38th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2023, Luxembourg, September
11-15, 2023. IEEE, 2023, pp. 736–747. [Online]. Available:
https://doi.org/10.1109/ASE56229.2023.00039

[69] D. He, J. Lu, and J. Xue, “Qilin: A New Framework For Supporting
Fine-Grained Context-Sensitivity in Java Pointer Analysis,” in 36th
European Conference on Object-Oriented Programming, ECOOP 2022,
June 6-10, 2022, Berlin, Germany, ser. LIPIcs, vol. 222. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 30:1–30:29.
[Online]. Available: https://doi.org/10.4230/LIPIcs.ECOOP.2022.30

[70] A. O. Mustafa and M. A. Sayegh, “Message passing: Survey on rpc,
rmi, and corba,” 2021. [Online]. Available: https://api.semanticscholar.
org/CorpusID:235309138

[71] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D. Yuan, and
M. Stumm, “lprof: A Non-intrusive Request Flow Profiler for Distributed
Systems,” in OSDI, 2014, pp. 629–644.

[72] Y. Zhang, S. Makarov, X. Ren, D. Lion, and D. Yuan, “Pensieve: Non-
Intrusive Failure Reproduction for Distributed Systems using the Event
Chaining Approach,” in SOSP, 2017, pp. 19–33.

[73] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, “A Survey on
Automated Log Analysis for Reliability Engineering,” ACM Comput.
Surv., vol. 54, no. 6, pp. 130:1–130:37, 2022. [Online]. Available:
https://doi.org/10.1145/3460345

[74] K. Seemakhupt, B. E. Stephens, S. M. Khan, S. Liu, H. M. G.
Wassel, S. H. Yeganeh, A. C. Snoeren, A. Krishnamurthy, D. E.
Culler, and H. M. Levy, “A Cloud-Scale Characterization of
Remote Procedure Calls,” in Proceedings of the 29th Symposium

12

on Operating Systems Principles, SOSP 2023, Koblenz, Germany,
October 23-26, 2023. ACM, 2023, pp. 498–514. [Online]. Available:
https://doi.org/10.1145/3600006.3613156

[75] J. Wang, Y. Yang, J. Zhang, X. Yu, O. Alfarraj, and A. Tolba,
“A data-aware remote procedure call method for big data systems,”
Comput. Syst. Sci. Eng., vol. 35, no. 6, pp. 523–532, 2020. [Online].
Available: https://doi.org/10.32604/csse.2020.35.523

[76] X. Yan, A. P. Joa, B. Wong, B. Cassell, T. Szepesi, M. Naouach, and
D. Y. Lam, “Specrpc: A general framework for performing speculative
remote procedure calls,” in Proceedings of the 19th International
Middleware Conference, Middleware 2018, Rennes, France, December
10-14, 2018, P. Ferreira and L. Shrira, Eds. ACM, 2018, pp. 266–278.
[Online]. Available: https://doi.org/10.1145/3274808.3274829

[77] Y. Zheng and X. Zhang, “Path sensitive static analysis of web
applications for remote code execution vulnerability detection,” in 35th
International Conference on Software Engineering, ICSE ’13, San
Francisco, CA, USA, May 18-26, 2013. IEEE Computer Society,
2013, pp. 652–661. [Online]. Available: https://doi.org/10.1109/ICSE.
2013.6606611

[78] L. Jokubauskas, J. Toldinas, and B. Lozinskis, “Detecting applications
vulnerabilities using remote procedure calls,” in Proceedings of the
27th International Conference on Information Society and University
Studies (IVUS 2022), Kaunas, Lithuania, May 12, 2022, ser. CEUR
Workshop Proceedings, vol. 3611. CEUR-WS.org, 2022, pp. 58–65.
[Online]. Available: https://ceur-ws.org/Vol-3611/paper10.pdf

[79] A. Singh, B. Singh, and H. Joseph, “Vulnerability Analysis for RPC,”
in Vulnerability Analysis and Defense for the Internet. Springer, 2008,
pp. 135–167.

[80] S. Marksteiner, H. Vallant, and K. Nahrgang, “Cyber security
requirements engineering for low-voltage distribution smart grid
architectures using threat modeling,” J. Inf. Secur. Appl., vol. 49, 2019.
[Online]. Available: https://doi.org/10.1016/j.jisa.2019.102389

[81] E. Barlas and T. Bultan, “Netstub: A framework for verification
of distributed Java applications,” in 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2007), November
5-9, 2007, Atlanta, Georgia, USA. ACM, 2007, pp. 24–33. [Online].
Available: https://doi.org/10.1145/1321631.1321638

[82] K. H. Lee, N. Sumner, X. Zhang, and P. Eugster, “Unified
debugging of distributed systems with Recon,” in Proceedings
of the 2011 IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2011, Hong Kong, China, June 27-30
2011. IEEE Compute Society, 2011, pp. 85–96. [Online]. Available:
https://doi.org/10.1109/DSN.2011.5958209

[83] B. Xin, P. T. Eugster, X. Zhang, and J. Yang, “Lightweight Task Graph
Inference for Distributed Applications,” in 29th IEEE Symposium on
Reliable Distributed Systems (SRDS 2010), New Delhi, Punjab, India,
October 31 - November 3, 2010. IEEE Computer Society, 2010, pp.
100–110. [Online]. Available: https://doi.org/10.1109/SRDS.2010.20

13

