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Abstract—Appropriate string test data generation is important
for program testing. Complex string APIs combinations are com-
monly used to handle string parameters. However, the complex
combinations make it difficult to express comprehensive string
related constraints and generate suitable string data to trigger
bugs and cover more branches.

In this paper, we propose a novel approach to characterize
the input strings and their operations (API invocations) with the
regular expressions for string test data generation, with insight
that they support rich syntax and can express the semantics
of various string APIs combinations. We build a set of mapping
rules that map 48 string APIs in Java to regular expressions, and
design an inference algorithm to generate regular expressions
for the complex string APIs combinations. With these regular
expressions, more effective string data can be generated in
an efficient way. Experiments on multi-type programs from
assignments, LeetCode platform and open source community
show that our approach can increase the branch coverage (17%)
and find more bugs (+81) than the existing work. For the basic
library JDK, 17 defects have been found, of which 14 are
confirmed by the JDK developers and 3 are fixed in new version.

Index Terms—String, Test Data Generation, Regular Expres-
sion, Test Case Generation

I. INTRODUCTION

Java is one of the most popular programming languages

[13]. Strings are widely used in Java programs. A large

number of string APIs are provided by JDK to support various

operations, and used in many Java programs, such as web

applications, mobile device applications, etc. Testing for these

programs requires more appropriate string input data.

It is not easy to generate suitable test data for strings auto-

matically, especially for the complex string APIs or even their

combinations. For example, the snippet str.split("#").
subString(3,8).lastIndexOf(".") has some po-

tential exceptions like out of bounds, which is difficult to deal

with. One way is to convert constraints into SMT formats.

In fact, each string API represents a certain characteristic of

its caller. The SMT solvers try to convert the constraints that

the caller of the API should satisfy into SMT formats, which

is difficult in practice. Although SMT-LIB [3] provides 12

core functions and 5 additional functions to express commonly

used string operations, it cannot convert the split(...) method

and the lastIndexOf(...) method into SMT formats by the

current syntax. And the automatic conversion from the string

API combinations to SMT formats is not supported either.

∗These authors contributed equally.†Corresponding Authors.

Besides, in the area of test generation, both random testing

and search-based testing cannot generate suitable test data for

Java programs with complex operations of string APIs like the

above snippet. Randoop [40] randomly generates regression

test cases, and it does not intentionally generate string-related

test data. Search-based EvoSuite [24] implements seed

pools where the seeds are mutated to serve as the data in test

cases. One of the seed strategies is dynamic seeding, which

uses any values observed during execution as the seeds [44]. It

is effective for the single or simple string APIs, but struggling

for the complex ones or even their combinations, since the

seeds are simple, and the mutation rules are fixed and limited.

String APIs provide support for various operations on

strings and each API represents a specific pattern of a string.

In other words, if a string tries to invoke a string API and

satisfy its semantics, it needs to match some patterns. Our

key insight is that regular expressions can characterize a string

with rich semantics. They have powerful semantic expression

abilities and can express the string APIs that are not supported

by the current SMT-LIB. Moreover, The regular expressions

can flexibly describe the semantics of various string APIs

combination operations. If there is a regular expression to

characterize the string parameter which invokes string APIs,

it is easy to generate string data for the program testing.

Challenges. To characterize the string parameter with regu-

lar expressions, there are two challenges. The first challenge is

that for the string APIs with complex semantics like split(...)
and lastIndexOf(...), it is not easy to map them to the regular

expressions directly. Another challenge is that there are a large

number of different string API combinations, and generating

a regular expression for each API combinations is difficult.

Our Approach. In light of the above, we propose a novel

approach to characterize the string parameter with regular

expressions. To deal with the first challenge, we construct a

mapping from string APIs to regular expressions called API-

Regex mapping, which characterizes the string APIs equiva-

lently or approximately based on the JDK specification and the

regular expression syntax. Then for the combination of string

APIs, we propose an iterative inference algorithm to merge the

regular expressions one by one based on the mapping to fit

the usage of the API combinations. The inference algorithm is

based on slicing analysis which focuses on the path containing

at least one string API invocation on the string parameter.

Finally, the inferred regular expressions can be used for the

string test data generation and test case generation to improve
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the branch coverage and find string related bugs.

In summary, the contributions in this paper are as follows:

• API-Regex Mapping. We build a mapping from 48 string

APIs to regular expressions based on their semantics, which

are equivalent or approximate.

• Inference Algorithm. We design an inference algorithm

that can characterize the string parameter with regular

expressions under the combination of its string API invoca-

tions. It is based on the API-Regex mapping and the slicing

analysis.

• String Test Data Generation Tool. We have developed

an automatic tool JustinStr to implement our approach,

which outputs the string test data for test cases genera-

tion. In a benchmark consisting of various Java programs,

JustinStr has improved the branch coverage (+17%) and

found more bugs (+81) than EvoSuite. Among them, 17

bugs are from the JDK, of which 3 are known bugs and 14

bugs have been confirmed by JDK developers.

II. PRELIMINARY

In this section, we will introduce string APIs in Java

and the regular expressions. We have conducted a statistical

analysis to study the usage frequency of string APIs and their

combinations in programs. A motivating example shows the

typical problems caused by string operations in the end.

A. String APIs and Regular Expressions

JDK provides many APIs about string operations in the

java.lang.String class. In terms of semantics, some of

them are universal operations, which may be supported in

other program languages. Some of them are unique to the JDK,

such as the regionMatches(...) method which tests whether the

specific regions of two strings are equal. They are widely used

in Java programs and will be discussed further in section II-B.

Previous work [15], [20] shows that about 40% of Java,

JavaScript, Python projects use regular expressions. A regular

expression (regex) is a special string consisting of characters

or symbols, and defines a search pattern for strings. The basic

syntax of the regular expressions is shown on the website [2].

For example, the Kleene star (*) in it is a special mark which

is used to indicate infinite numbers of iterations. If the Kleene

star is replaced by a specific value, the iteration is finite. The

combination of these syntax can effectively constrain strings,

which means it is possible to build a mapping set from string

APIs to regular expressions.

A regular expression can be used for string data generation.

We have investigated 8 tools to figure out whether they are

easy to use for generating strings corresponding to regular

expressions with friendly Java APIs to support our approach.

Among them, these two tools Z3-Strs [12] and CVC4 [8] are

excluded because the APIs provided by their Java versions

are incomplete, and they always generate characters of “a-

zA-Z” rather than fairer random ones when arbitrariness is

required in practice. The other 6 tools are from the open source

community [26], [33]. To test which one is more suitable

for string data generation, we select four different types of

TABLE I
COMPARISON ON JAVA TOOLS GENERATING STRING DATA

Tool
E-prone Regular Expression

[\s\S]{1,4} [ˆa]{1,3} (?i)AbC [\Q*\E]{1,3}
xeger [4] � � � �

Generex [39] � � � E

MutRex [41] � � � �

bfgex [22] � � E �

RgxGen [19] � � � �

random-string [9] E E � E

�: the generated string matches the regex; �: not matching; E: an
exception occurs during generation.

regular expressions that are frequently used in practice and

error-prone for the tools. The result in Table I shows that the

tool RgxGen performs the best, which has friendly APIs and

has been selected as the support tool for our work finally.

B. String API Usage

Although there is already some previous work on the usage

of the string APIs, we need to pay attention to the intra-

procedural combination usage of these APIs, which is for the

unit testing. So we perform a statistical analysis, trying to

answer the following questions:

• EQ1: What is the usage frequency of string APIs in Java

programs, especially for their combinations?

• EQ2: How many branching statements are affected by the

string APIs’ invocations?

Repository. To answer these questions, we have built a

repository. It contains the defect4j [30] and the release

version of IntelliJ IDEA [18] (version: 2020-02). The

latter one is an IDE program widely used by Java developers.

Although it is one program, there are 643 jar files with a total

size of 850.87MB, involving a large number of widely used

third-party libraries.

Methodology. We pay attention to the usage frequency

of string APIs, especially their combinations in a method.

We have counted the number of times the string API used

on a single path. The loop has been unrolled only once

during finding the path. And if a path has no any string

API invocation, it will be ignored. In addition, we want to

know how many API invocations affect conditional branches.

In other words, if the return value of the string API invocation

is used in a branch condition expression, it will affect the

branch. We ignore the parts that have an indirect effect through

complex inter-procedural calls and calculations for the return

values of string API invocations.

Result. The string API usage result is shown in Table II.

The combination involves multiple APIs, and we have found

the combination of at most 5 APIs on a single path in the

repository. For example, the fourth row means that there are

873 paths involving 84 combinations of two string APIs, and

the 753 of 873 path conditions are affected by the return

value of the 75 of 84 two-string-API combination invocations.

From the table, we can see that string API invocations are

used frequently in Java programs. Among them, the combina-

tions of string APIs make up 8.5% (1068/12604). Subsequent
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TABLE II
STRING API USAGE

API NO.
In Path In Branch

ct.(Total) ct.(Dedup) ct.(Total) ct.(Dedup)

Single 1 11,536 29 8,304 25

Combination

2 873 84 753 75
3 159 58 132 49

4 32 7 27 6

5 4 2 3 1

Sum 12,604 180 9,219 156
Single: a single string API invocation.
Combination: combination of multiple API invocations.
NO: the number of API combinations, a single API involves only one API.
ct.(Total): the usage the API combination is used.
ct.(Dedup): the count the API combination is used after deduplication.

experiments will show that they are more difficult to test.

Besides, 73.1% (9219/12604) of string API invocations or their

combinations have affected the branches in the programs. This

is one of our motivations to tackle the challenges in the string

test data generation.

C. Motivating Example

Listing 1 shows an example where three string APIs are

invoked serially. There are two explicit paths from this code

snippet based on the original if branch (line 5). The branch

conditions in both paths are related to string API invocations.

Since the SMT syntax mentioned earlier does not support

converting the string API method split(...) to an SMT for-

mat, the constraint solvers cannot solve the path conditions.

EvoSuite and Randoop can not generate suitable test

data to cover them based on the evolutionary algorithms or

random testing due to the complexity under the combination

of multiple string API invocations.

Listing 1. A Motivating Example

1 // str is a method parameter
2 String[] splitArray = str.split("#");
3 String splitStr = splitArray[2];
4 String subStr = splitStr.substring(3, 8);
5 if (subStr.equals("class")) {
6 ... //True branch: omitted
7 } else { ... //False branch: omitted }

In addition, there are some implicit paths which may cause

defects. The potential ArrayIndexOutOfBoundsExcep-
tion may be triggered since there is no judgement on whether

the index is out of bounds (line 3). The string API invocations

and path conditions in both explicit and implicit paths can help

us proactively trigger potential exceptions. To trigger the po-

tential StringIndexOutOfBoundsException (line4),

one possibility is the length of the splitStr is less than 3

and the str can be represented by the regular expression

"[#]{2}[ˆ#]{2}". The corresponding string “##aa” can

be generated as the input of str which can trigger the ex-

ception. Besides, to cover the branch in line 6, the sub-
Str should equal “class” and the str can be represented

by "[#]{2}[ˆ#]{3}class". Therefore, the corresponding

string “##abcclass” can cover the true branch. Other paths

can be explored in the same way. The regular expressions

above actually represent the set of strings that can trigger

an exception or cover the branches. In other words, we not

Fig. 1. Overview of Our Approach.

only have found a string that can trigger an exception or

cover a branch, but found the characteristics of the input

string parameter. One of our purposes is to infer these regular

expressions according to the program and use them to generate

string data in this paper.

III. STRING INPUT DATA GENERATION

In this section, we characterize the string parameters with

regular expressions. Figure 1 shows the overview of our

approach. The input is the bytecode jar files, and the specifica-

tions for string APIs in JDK. In the mapping module, to deal

with the different impacts from the different string APIs for a

path, we classify the string APIs into two categories, according

to whether their return values can be used in a conditional

expression directly. Then for each string API with different

conditional expressions, the API-Regex mapping provides a

well-defined regular expression wrapper (RegexWrapper).

The preprocessing is to obtain the basic properties of the

program, such as the class hierarchy and the control flow

graph. In order to focus on the string data generation, we

extract the string-related path and simplify it into string API

invocation sequences (SAIS) for string parameters. Next we

mutate the sequences to simulate the string API related excep-

tional circumstance, and attempt to generate the corresponding

string data to trigger the exception. For each string API

invocation sequence, an inference algorithm based on the API-

Regex mapping is offered to derive the characteristics of the

input string parameters represented by a regular expression.

After that, the regular expression can be used for the string

input data generation and the test case generation. Finally, the

test case will be executed to find bugs or cover more branches

to improve the quality of the program.

A. String API Invocation Sequence Extraction

A traditional path in the program is represented as a

sequence of simple statements and conditional expressions

[49], [50]. To analyze the string API invocation, we focus on

the string related path with the string parameter and define

it as a StringParaPath. Besides, as we mainly serve

for unit testing, we focus on covering more intra-procedural

paths. And the entrances to the analysis are all public methods

in the testing program. Based on the StringParaPath,

we split and simplify it into multiple string API invocation

sequences by slicing analysis to deal with the string parameter

individually.
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Definition III-A1. (StringParaPath) A StringParaPath
is the path in a method which contains at least one string
API invocation statement on the local variable of the string
parameter.

Definition III-A2. (String API Invocation Sequence (SAIS))
A SAIS is a 2-tuple

SAIS = 〈CondExpr, Trajectory〉
, where the CondExpr is a conditional expression in the
StringParaPath, and the Trajectory is a k-length list
of ordered pairs

〈(stmt1,map1), (stmt2,map2), ..., (stmtk,mapk)〉
where the stmti in each pair is a string API invocation
statement related to the conditional expression and the mapi
maps the variables in the stmti to their values.

To construct the SAIS, the StringParaPath needs to

be sliced to snippets firstly, which purely contains the flow-

dependent [1] statements for a single conditional expression.

Next the SAIS can be built under the value analysis based

on itself. Finally, we make mutations to get more SAISs if it

involves the array index operations or the string API method

which may throw exception(s).

Slicing. Algorithm 1 shows the slicing process for a

StringParaPath. It takes a StringParaPath and one

of its conditional expressions as the inputs and outputs a

statement snippet. The slicing is to record the flow-dependent

statements sequence on each conditional expression in the

StringParaPath. It starts with the conditional expression

and searches the assignment statements of its dependent

variables backward along the StringParaPath (line 1-6). If

it encounters such a statement, the statement will be added

into the snippet (line 11). At the same time, the assignment

statement may have its own dependent variables which also

need to be searched (line 12-13). Thus the searching is

an iterative process ending until all dependent variables are

handled (line 17-18) or it reaches the start point of the path

(line 7). In particular, it uses a boolean variable to mark

whether the snippet is the one containing string API calls

on the variable localized from a string parameter during the

slicing (line 14-15). If it is false, the SAIS construction is

unnecessary (line 20-21). The the snippet list will be returned

as the input of the construction of the SAIS at the end.

Construction. For each snippet generated in the slicing, a

SAIS can be constructed based on it as shown in Algorithm 2.

For each string API invocation statement in the snippet, the

mapping from its variables to the values is built and added

into the trajectory of the SAIS (line 8-11). If the value of a

variable can be inferred as a concrete value, its value in the

mapping will be a constant. Otherwise it will be marked with

a special mark similar to a symbolic value in the mapping.

In particular, for convenience in the inference of the regular

expression in the next section, when getting an element of an

array with index, we combine the assignment statement of the

array and its index expression, and put the variables together

Algorithm 1: Slice

Input: StrPP , condExpr
Output: snippet

1 containsStringParameter = False;
2 snippet = {};
3 variableSet = {};
4 stmt = condExpr;
5 snippet.insertAtFirst(stmt);
6 variableSet.addAll(getVariables(stmt));
7 while stmt != NULL do
8 for each v ∈ variableSet do
9 if stmt.isAssignStatementOf(v) then

10 variableSet.remove(v);
11 snippet.insertAtFirst(stmt);
12 variables = getVariables(stmt);
13 variableSet.addAll(variables);
14 if isStringParaLocalization(stmt) then
15 containsStringParameter = true;

16 break;

17 if variableSet.isEmpty() then
18 break;

19 stmt = StrPP .getPredecessorOf(stmt);

20 if containsStringParameter == False then
21 snippet = NULL;

22 return snippet

Algorithm 2: Construction

Input: snippet
Output: SAIS

1 SAIS = {};
2 SAIS.CondExpr = seg.getLastElment();
3 for each s ∈ snippet do
4 if s.contanisStringAPIInvocation() then
5 if s.getReturnType().isArrayType() then
6 expr = getIndexExpr(s);
7 s = conbination(s, expr);

8 variables = getVariables(s);
9 m = getValuesMapping(variables);

10 pair = 〈s, m〉;
11 SAIS.Trajectory.add(pair);

12 return SAIS

(line 5-7). The following snippet shows an example of the

combination.

1 array = str.split("#"); element = array[2];//original
2 element = str.split("#")[2];//combination

Mutation. After the SAIS construction, we also mutate it in

order to actively trigger the potential exceptions which may be

caused by string-related or array-operation-related operations

at runtime. The former involves the string APIs which throw

StringIndexOutOfBoundsException in their imple-

mentations, such as substring(...) and charAt(...). The latter

contains the string APIs whose return type is array, such as

split(...). It is easy to cause an ArrayIndexOutOfBounds-
Exception when getting an element in an array. For each

statement which is contained in an SAIS and may cause

exceptions, we mutate the SAIS to another one to characterize

the string parameter to trigger the potential exceptions. The

Trajectory of the mutated SAIS can be denoted as

〈(stmt1,map1), ..., (stmti,mapi), (stmtN ,mapN )〉
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TABLE III
A SAIS AND ITS VARIANT

SAIS CondExpr: eq==True
Trajectory: splitStr=str.split(v4)[i1] {v4:“#”, i1:2}

substr=splitStr.substring(v2,v3){v2:3,v3:8}
eq=subStr.equals(v1), {v1:“class”}

SAISN +CondExpr: length<3
Trajectory: splitStr=str.split(v4)[i1] {v4:“#”, i1:2}

+ length=str.split(v4).length {v4:“#”}
, where the stmti is the position of the API invocation, and

the stmtN is the new assignment statement for the length

of the array or string caller, and the mapN is the mapping

corresponding to the new statement stmtN . At the same time,

a new conditional expression will be constructed as the one

in the mutated SAIS representing the length judgement.

For the example in Listing 1, an SAIS and its variant are

shown in Table III. When there is an array index operation

in the SAIS, a length judgement related statement and condi-

tional expression will be added to form another SAIS denoted

as SAISN .

B. API-Regex Mapping

Based on the powerful expressive ability of the regu-

lar expression, we have established an API-Regex map-

ping to represent the string APIs with regular expressions.

JDK (version: 8u292) provides 76 string APIs in the class

java.lang.String. We focus on the 50 string APIs

whose modifiers are public and non-static since the static

API is used for the class instead of a string instance. Among

them, two methods, hashcode() and concat(...), are excluded

by us because the former one is used for the uniqueness and

the latter one has a complex semantic. For each of the 48

remaining string APIs and its related conditional expression, a

regular expression is constructed according to its semantics as

described by the JDK specification. The construction of regular

expressions takes whether the return value of conditional

expression is true into account. If it is false, we can generate

a string not matching the regular expression. That means

the parameter in the SAIS is characterized with a regular

expression, which can be used for another SAIS obtained

after negating the conditional expression to avoid redundant

inference. In fact, it does not pay more attention to identifying

which one is true and which one is false when implementing,

since there must be another SAIS with a negated conditional

expression for each SAIS with a conditional expression. Thus

a string matching the regular expression can be used to try to

cover a branch and the string not matching it can be used for

another one. In addition, the set of the strings corresponding

to the generated regular expression for each API is a proper

subset (Total: 31) of or is equal (Total: 17) to the one satisfying

the API. Because "[ˆabc]" is used to indicate that the string

“abc” is not matched, but it means in regular expression syntax

that none of the three letters “abc” will appear.

Besides, these string APIs play different roles in the path

and have different effects on regular expression inference.

Different string APIs usually appear in different positions in

the SAIS. Therefore, they are classified into two categories

as follows.

• Terminated API. The API whose return type is char, int,

boolean, char[] or byte[], that is, primitive type or

its array type, is considered as a terminated API (Total: 15).

In general, its return value is used directly in the conditional

expression,

• Non-terminated API. The API whose return type is

String, CharSequence or String[] is considered as

a non-terminated API (Total: 33). Their return values cannot

appear directly in conditional expressions. By default, we

use the method equals(...) instead of “==” to compare

strings for equality. Usually, non-terminated APIs appear

anywhere in SAIS except at the end.

In particular, we have taken getting the length of an array

as a special terminated API to analyze the path that throws an

exception, like arr.length especially for the mutated SAIS. The

trajectory of a SAIS contains one terminated API invocation

and possible multiple non-terminated ones. When involving

multiple APIs, the regular expression corresponding to each

API needs to be merged one by one to get a final regular ex-

pression. We design a data structure named RegexWrapper
to describe the regular expression and the information to use

when merging.

Definition III-B1. (RegexWrapper) A RegexWrapper is a
4-tuple

W = 〈R,L, S, Lmin〉
, where
• R is the regular expression according to the string API and

the expression on its return value;
• L is the length of the string that the R allows to merge and

–1 indicates that there is no limit for the length;
• S is a special regular expression with which to replace

during inference if any character regular expression is in
the suffix of the R;

• Lmin is the minimum length of a string corresponding to
the R;

Definition III-B2. (API-Regex Mapping) A API-Regex
Mapping is a 2-tuple

M = 〈APIPair,RegexWrapper〉
, where APIPair is a pair including the string API invocation
and its related conditional expression, and RegexWrapper is
defined above.

We can get one RegexWrapper by one APIPair from

the API-Regex Mapping. For the terminated APIs which

appear at the end of the SAIS and have the conditional expres-

sion, the S and L in a RegexWrapper are always NULL and

–1, since they do not need to merge another one. And for the

non-terminated APIs, their conditional expressions are always

NULL, because the SAIS does not end with them. Table IV

shows some API-Regex mappings (access anonymous link1

for all). The generated regular expression for each API is

used to represent the caller of that API. For example, the

1https://github.com/suoyi123wang/JustinStr
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TABLE IV
PARTIAL API-REGEX MAPPING

APIPair RegexWrapper
API Invo.

(caller: str | arr)
CondExpr R L S Lmin

r=str.startswith(v) r==T v[\s\S]* –1 NULL Len(v)
r=str.length() r==l [\s\S]{l} –1 NULL l

r=str.substring(i1,i2) NULL [\s\S]{i1} i2-i1 NULL i1
r=str.split(v)[i] NULL [v]{i} –1 [ˆv] i
r=arr.length r >i [\s\S]{i+1,} –1 NULL i+1

substring(...) method (row 5) returns a new string (r) that is

the substring of the caller (str) from the begin-index (i1) to

the end-index (i2 − 1). The characters before the begin-index

in the caller (str) will be cut and not affect the subsequent

statements. Thus they will be characterized by any strings with

a length of i1. So the element R in the RegexWrapper
is the regular expression "[\s\S]{i1}" and its minimum

length Lmin is the value of i1. Because the substring(...) is a

non-terminated method, other string APIs will be called by

the return variable r later. Therefore, a subsequent regular

expression characterizing the return variable r needs to be

merged into the current regular expression. And the length

of subsequent regular expression is restricted to (i2 − i1),

represented by the element L. The length of the caller (str)

is constrained to be i2, that is, an arbitrary string of length i1
and another arbitrary string of length i2-i1 will be merged later

denoted as strlen:i2 = Rlen:i1 + Rr
len:(i2−i1)

. Moreover, it has

no extra limitation for the API invocation, so the element S is

NULL. The next section will introduce the inference algorithm

to characterize the caller in a sequence.

C. Regex Generation

The trajectory in an SAIS, which is an ordered pair

sequence with API invocations and their mappings, contains

multiple non-terminated APIs and a terminated one. It can be

denoted briefly as

traj = 〈N1,M1〉, ..., 〈Ni,Mi〉, ..., 〈Nk−1,Mk−1〉, 〈T,Mk〉
, where Ni is the non-terminated API invocation statement,

T is the terminated API invocation one following with a

related conditional expression and Mi is the mapping from

the variables of the statement to their values. For each pair in

a trajectory, the RegexWrapper corresponding to it can be

obtained from the API-Regex mapping. For the inference of an

SAIS with the multiple string API invocations, the inference

between two RegexWrappers called merge function needs to

be introduced firstly before the SAIS can be inferred.

Mergence. The implementation of the merge function is

described in Algorithm 3. It takes two RegexWrappers (w2

and w1) as inputs and outputs a new one (W). If there is a re-

striction for any character in w2, it needs to replace the regular

expression "[\s\S]" in w1 with the restriction expression in

w2 (line 3). In addition, if w2 has a length limitation for the

merged string, the Kleen star (“*”) in the element R of w1

needs to be concretized into a certain one (w2.L− w1.Lmin)

and the minimum length of w1 has updated to w2.L (line 5-

7). After that, it concatenates the regular expression R of w1

Algorithm 3: Merge

Input: w2, w1

Output: W
1 ANY REGEX = “[\s\S]”;
2 if w2.S != NULL then
3 w1.R = w1.R.replace(ANY REGEX, w2.S);

4 if w2.L != -1 then
5 newLen = w2.L – w1.Lmin;
6 w1.R = w1.R.replace(“*”, “{” + newLen + “}”);
7 w1.Lmin = w2.L;

8 W.R = concat(w2.R, w1.R);
9 W.L = -1;

10 W.S = NULL;
11 W.Lmin = w1.Lmin + w2.Lmin;
12 return W ;

Algorithm 4: Inference

Input: SAIS
Output: regex

1 trajectory = SAIS.trajectory;
2 condEpr = SAIS.condExpr;
3 length = trajectory.length;
4 i = length- 1;
5 do
6 pair = trajectory[i−−];
7 if i == (length - 1) then
8 w = getWrapperFromMapping(pair, condEpr);
9 else

10 W = getWrapperFromMapping(pair, NULL);
11 w = Merge(W , w);

12 while i ≥ 0;
13 regex = w.R
14 return regex;

to the one of w2 to get a new regular expression assigned to

the element R of the new RegexWrapper (W) without the

restrictions for its length and suffix (line 8-10). Its minimum

length is (w1.Lmin+w2.Lmin) (line 11). Finally it is returned

for continued inference.

Inference. Based on the merge function, an inference can

be conducted for a SAIS as shown in Algorithm 4. It takes

a SAIS as the input and outputs a regular expression regex.

It starts from the terminated API invocation point of the

trajectory in the SAIS. And the RegexWrapper corre-

sponding to it is based on the values of its variables and the

conditional expression (line 8). The merge process iteratively

executes backwards along the trajectory and terminates after

its starting point has also been iterated (line 5-12). During the

iterating, the conditional expression of the non-terminated API

invocation is NULL (line 10). In the end, the regular expression

element R in the final RegexWrapper is returned as the

result. In other words, the regular expression has characterized

the string parameter under the SAIS. Then it can be used for

the string test data generation and test case generation.

Figure 2 shows the inferring process for the SAIS in

Table III. It starts from the terminated API invocation point and

ends with the starting one of the sequence. By looking up the

API-Regex mapping table three times and two rounds of the

mergence iteration, the regular expression is finally obtained

with the value "[#]{2}[ˆ#]{3}class" characterizing the

input parameter str in the sequence.
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Fig. 2. Inference Example for the SAIS in Table III

Complexity Analysis. In the process of the SAIS extraction,

we need to find paths for each public method on its CFG [38]

first. We unroll each loop only once, so this is a problem of

finding linearly independent paths which can be represented

by the cyclomatic complexity. And the cyclomatic complexity

(M ) of the method (or program) is shown as follows :

M = E −N + 2P

, where E is the number of edges of the CFG, N is the

number of nodes of the CFG, and P is the number of

connected components in the CFG. At this time, not all paths

are needed to be stored, but only those StringParaPaths.

Therefore, the upper bound on the space complexity equals

to the cyclomatic complexity M . The analysis of the slicing,

construction and mutation for an SAIS is linear. These three

steps will greatly reduce the complexity of subsequent analysis

which reduces both the number of paths to be analyzed and the

length of the sequence. In fact, the sequence involves at most

5 APIs according to Section II-B. When generating regular

expressions, the inference contains the mergence operation.

For some points in the sequence whose context needs to be

explored, the worst time complexity is O(P 2) where P is the

number of points in the sequence, which is much smaller than

N (P 2 is much smaller than N too) and is not greater than

5 in practice as mentioned before. And the space complexity

is linearly related to P , which is O(P ). In summary, the time

complexity of the whole process is

O(M) +O(M) +O(P 2) = O(M)

. And the space complexity is also O(M). In other words, the

time and space complexity of the whole process is linearly

related to the cyclomatic complexity of the program.

IV. EVALUATION

Based on our approach, we have developed an automatic

tool named JustinStr to implement the regular expression

inference for the programs. It has been built on the top of

Soot [47] and the intermediate representation Shimple. And

it has integrated the RgxGen to automatically output strings

based on the inferred regular expressions. For those regular ex-

pressions that contain symbolic values, we ignore their string

generation. In this section, we will evaluate JustinStr by

answering the following three questions.

• RQ1: How effectively does JustinStr characterize the

input string parameter?

• RQ2: Is the string data generated by JustinStr helpful

to improve the branch coverage in programs?

• RQ3: How does JustinStr perform on finding bugs?

A. Experiment setup

All experiments below have been executed in a docker

container, where the operating system is Ubuntu 9.4.0 (Linux

version 5.4.0-107-generic) with 46 cores (Intel(R) Xeon(R)

E5-2680) and 50G RAM. In addition, the Java environment is

JDK-1.8 and the JUnit environment is JUnit4.

Setup for RQ1. Ensuring that regular expressions are

semantically correct is difficult. And testing is a common way

to ensure the correctness of regular expressions [51]. In order

to test the characterization ability of JustinStr for the input

string parameter, we have constructed a data set based on the

programs in Section II-B. We obtain a total of 85 combinations

of API usage, but they distribute in different projects and

mix with many other execution environment requirements.

For a more pure evaluation, we exclude the interference of

other factors and extract these 85 combinations and their

corresponding real parameters to build new methods. For each

API combination, we select 5 groups of real parameters (and

expression parameters if necessary) randomly. If the number

of an API combination usage is less than 5, the parameter

involved will be used multiple times. And an if-statement

including the expression of the last string API is added in

the end of each new method with its true and false branches.

Therefore, we have constructed a data set with a total of

425 methods. There are two branches (two paths) for each

method and both of them are affected by the same string

API invocation or their combination. JustinStr infers two

regular expressions for each method, characterizing the input

parameter for the true branch and the false one respectively.

10,000 strings are generated by RgxGen for each regular

expression to eliminate randomness, which are used as the

method inputs to test whether the branch will be executed.

During the experiment, we have found that the upper limit

of the length for the generated string has a little impact on

the results, so we also conduct experiments for that. If a

branch is executed under the input string data generated by

JustinStr, the regular expression corresponding to it will

be recorded as an effective one. It indicates that the input

parameter is effectively characterized by JustinStr.

Benchmark for RQ2 and RQ3. To answer RQ2 and

RQ3, we have collected three datasets of programs from

developers with different experiences. (1) Classroom As-
signments. The first dataset is the student assignments in a

programming practice class for the beginners. 26 assignments

have been selected from 26 students, 3 of which cannot

be compiled successfully and are excluded. (2) LeetCode
Solutions. Moreover, another dataset is the official solutions

from the LeetCode [43] platform which is popular with

interviewees. There are a total of 600 questions labeled with

“string” in the platform, of which 79 questions are viewable

to members only. We have obtained 290 official solutions

from 521 questions, where the solution code match the regular
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TABLE V
STATISTICS OF THREE DATASETS

Program #Cls #LOC M1 M2 #RE
23 Assginments 406 9667 45 42 98
289 Solutions 289 4529 217 183 677
closure-compiler-20220202 8,162 218,939 194 153 475
commons-lang3-3.12.0 505 9,600 73 39 211
commons-io-2.11.0 240 5,544 21 17 81
mysql-connector-java-8.0.29 1,345 42,726 56 44 163
poi-ooxml-5.2.2 1,529 47,176 45 31 84
OpenJDK-8u292 25,574 697,752 1,513 1,250 6,697

expression "```Java[\s\S]*?```". Besides, one official

solution is excluded because its local compilation fails. Finally

289 official solutions have been put into the dataset, whose

average number of views and average number of comments

are 65,112 and 123, respectively. (3) Open Source Programs.
5 popular Java programs have been selected from the open

source community and Defect4j benchmark, since they con-

tain abundant string operations. The average usage numbers

on the maven repository [25] for these 5 projects in Table

V are 10,933. In addition, considering that JDK provides

basic support for the execution of Java programs, we add

three common modules of JDK to the benchmark, which are

tools.jar, nashorn.jar, and rt.jar. The basic information of

the programs is shown in Table V, where #Cls indicates

the number of classes and the number of lines of code is

#LOC. The column M1 represents the number of methods,

each of which is contained in at least one StringParaPath. The

column M2 indicates the number of methods in which the

regular expression without any symbolic value can be inferred

by JustinStr. The methods in M2 are a subset of the

methods in M1. The column #RE represents the number of

expressions inferred by JustinStr without symbolic values.

Setup for RQ2. To test whether the generated string test

data can improve branch coverage, we have applied the data

into EvoSuite based on [23]. EvoSuite implements a seed

pool, where the constants that appear in a class are put in, and

the seeds are mutated to generate test cases. To reduce the

mutating effect from EvoSuite, three strings are generated

for each inferred regular expression, and put into the seed

pool of a class after deduplication. If the string data has not

appeared in the test case before output, the test case will be

regenerated once again. Test cases have been generated 10

times with default configuration to reduce randomness.

Setup for RQ3. JustinStr implements a built-in module

to apply the string test data corresponding to the inferred

regular expressions to test cases quickly and directly. Be-

sides, JustinStr supports generating test cases for all

projects, while EvoSuite whose implementation is based

on JDK, is internally set not to generate test cases for JDK to

prevent confusion when generating. Moreover, JustinStr
supports dealing with string data, but EvoSuite can also

handle other types. Therefore, we choose these two tools with

different characteristics to generate test cases with default

configurations. We focus on the methods denoted as M2 in

Table V, where the regular expressions are generated without

TABLE VI
HIT RATE OF REGULAR EXPRESSIONS GENERATED BY JUSTINSTR

Length Branch Single (%)
Combination (%)

2 3 4 5
L=10,20

True 100.00 100.00 100.00 100.00 100.00
(30,40,50)

L=10 False 99.77 99.41 99.33 98.09 100.00
L=20 False 99.55 99.14 99.02 99.11 100.00
L=30 False 99.35 98.84 98.72 99.35 99.99
L=40 False 99.14 98.47 98.50 99.49 99.99
L=50 False 98.94 98.20 98.18 99.65 99.98

symbolic values. Test cases from JustinStr which cannot

be successfully compiled are filtered out.

B. Experimental Results

Result for RQ1. As shown in Table VI, the 85 string API

combinations have been divided into 5 categories, which is

consistent with the classification in Table II. The first column

(Length) represents the maximum length for the string gener-

ation. The regular expressions we generate for the true branch

are 100% covered for all 5 generation lengths, which are either

equivalent to the strings satisfying the true branch or are the

proper subset of them. For each API combination, about 99%

of the false branches are covered on average since we generate

a string which is the complement of the strings corresponding

to the true branch.

Answer to RQ1. In summary, JustinStr can effec-

tively characterize the input string parameter with a regular

expression based on its API-Regex mapping and the inference

algorithm for both single string API invocation and their

combination usage.

Result for RQ2. The methods in any StringParaPath
for the datasets assignments and solutions involve more single

string API invocations and fewer combination usages than

that in open source programs. Therefore the branch coverage

for them is high by EvoSuite and the improvement for

them is 0%. Table VII shows the branch coverage information

improved by JustinStr for the five open source programs.

The column MCov100% represents the number of the methods

whose branch coverage is 100% already after the execution

of test cases generated by EvoSuite in 10 generations. We

have ignored these methods and focused on the methods whose

branch coverage is not 100%. And the column MCov(%)
shows the number of the methods whose branch coverage

is improved by JustinStr and their percentages of the

methods with any branch uncovered. The last two columns

(MaxCov) and (AveCov) show the largest branch coverage

improvement within a method and the average branch coverage

of the methods whose branch coverage has been improved.

Answer to RQ2. JustinStr is effective for the improve-

ment of the branch coverage by about 22%(40/186) of the

methods, which can be improved by up to 57%, and 17% on

average.

Result for RQ3. Table VIII shows the comparison of

bugs found by JustinStr and EvoSuite. The second

column is the number of bugs found by JustinStr and the

next one is the number of bugs found by both JustinStr
and EvoSuite. The fourth column represents the number
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TABLE VII
BRANCH COVERAGE IMPROVED BY JUSTINSTR

Program Seeds MCov100% MCov(%) MaxCov AveCov

closure-compiler 972 58 +18(19%) +50% +21%
commons-lang3 441 10 +10(34%) +57% +11%
commons-io 128 4 +5(38%) +43% +17%
mysql-connector-java 301 16 +5(18%) +34% +11%
poi-ooxml 125 10 +2(10%) +50% +28%

TABLE VIII
COMPARISON OF BUGS FOUND BY JUSTINSTR AND EVOSUITE

Program JustinStr Common Δ
Time (s)

JustinStr EvoSuite
Assignments 38 27 11 339 1627
Solutions 72 60 12 14 12,453
closure-compiler 33 21 12 72 2,394
commons-io 11 1 10 16 80
commons-lang3 15 3 12 15 709
mysql-connector-java 7 3 4 23 306
poi-ooxml 3 0 3 40 -
OpenJDK 17 0 17 10,228 -
Total 196 115 81 - -

of bugs that JustinStr can find but EvoSuite can-

not. Totally, JustinStr has found 196 bugs, of which

81 can not be found by EvoSuite, and EvoSuite has

found 287 bugs. JustinStr does not cover all bugs

because it has not paid attention to input parameters of

other types which may affect the result, while EvoSuite
does. And the generation time consumed by JustinStr
is much less than EvoSuite. Therefore JustinStr can

be used as an effective supplementary bug finding tool,

which can find 28% (81/287) more bugs with an extreme

low cost of time. The 196 bugs found by JustinStr,

are caused by ArrayIndexOutOfBoundsException
(28%), StringIndexOutOfBoundsException (23%),

NullPointerException (20%), NumberFormatEx-
ception (9%) and others (20%). Besides, we have reported

the JDK bugs we have found, of which 3 are known and have

been fixed in the new version, and 14 have been confirmed

by the JDK developers. The Issue ID and Commit ID of

them are shown in Table IX. There are more flaws in solutions

that only address a certain problem. But the three different

data sets all have quite a few defects which show the string-

related problem is ubiquitous. This reminds developers that

they should pay more attention to checking for null pointers,

array out-of-bounds, and string lengths for input parameters

or intermediate variables during string operations regardless

of experience.

Additionally, for these 115 bugs found by both JustinStr
and EvoSuite, we have counted the number of bugs trig-

gered by the test cases according to their orders. The earlier the

order of the test cases that trigger the bug, the more efficient

the test cases are. As shown in Figure 3, the bars represent

the number of bugs triggered by the test case at current order

and the poly-lines represent the number of accumulated bugs

triggered by the test cases before and within the order. The

number of bugs triggered by the first test case in JustinStr
accounts for 49%(56/115) and the number of bugs triggered

by the second test case accounts for 25%(29/115). The first

two test cases in JustinStr can trigger 74% of the bugs,

TABLE IX
BUGS CONFIRMED OR FIXED BY THE JDK DEVELOPERS

Type: ArrayIndexOutOfBoundsException (2)
Issue ID: I4MWI1 (Commit ID), 8279422
Type: StringIndexOutOfBoundsException (14)
Issue ID: 8278186, 8279128, 8279129, 8279198, 8279218, 8279336,
8279341, 8279342, 8279362, 8279423, **21212bd18(Commit ID),
8279424, **411a404a9(Commit ID), **8baba7d11(Commit ID)

Type: Infinite Loop (1), Issue ID: 8278993

Fig. 3. Comparison on Number of Bugs Found by JustinStr and
EvoSuite under Test Case Order. Bars represent the number of bugs
triggered by the test case at current order and poly-lines represent the number
of accumulated bugs triggered by the test cases before and within the order.

while EvoSuite only triggers 36%. In other words, the string

data generated by JustinStr have represented the string

parameter effectively, especially for the buggy path.

Answer to RQ3. Our approach can effectively characterize

string parameters with regular expressions. The test cases

generated based on it has efficiently found 81(+28%) more

defects with an extreme low cost of time. Besides, the first

two test cases in JustinStr have triggered 74% of the bugs,

while in EvoSuite have triggered 36%. JustinStr has

found 14 new bugs on JDK which are all confirmed by the

JDK devepolers.

C. Case Study

Listing 2. Case Study in JDK

1 // Case 1: StringIndexOutOfBoundsException
2 public static String parseIdFromSameDocumentURI(String

uri) {
3 if (uri.length() == 0) {
4 return null;
5 }
6 String id = uri.substring(1);
7 if (id != null && id.startsWith("xpointer(id(")) {
8 int i1 = id.indexOf(’\’’);
9 int i2 = id.indexOf(’\’’, i1+1);

10 id = id.substring(i1+1, i2);
11 }
12 return id;
13 }
14 //Case 2: Infinit Loop
15 static public String sansArrayInfo (String name) {
16 int index = name.indexOf (’[’);
17 if (index >= 0) {
18 String array = name.substring (index);
19 name = name.substring (0, index);
20 while (!array.equals ("")) {
21 name = name + "[]";
22 array = array.substring(array.indexOf(’]’) + 1);
23 }
24 }
25 return name;
26 }

We will study cases in JDK to demonstrate the effective-

ness of our approach. Listing 2 shows a typical bug caused
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by StringIndexOutOfBoundsException in JDK. The

method parseIdFromSameDocumentURI(...) in the class org-
.jcp.xml.dsig.internal.dom.Utils will throw a

StringIndexOutOfBoundsException if the value of

i1+1 is less than 0 (line 9). One of the generated regular

expressions is "[\s\S]{1}xpointer\(id[\s\S]*". A

generated string corresponding to the regular expression is

“0xpointer(id(G6”, which will make the values of the variables

i1 and i2 to be -1. Therefore, the StringIndexOutOfBo-
undsException will be triggered. Listing 2 shows another

serious bug in the class com.sun.tools.corba.se.-
idl.toJavaPortable caused by the infinite loop found

by JustinStr. It has generated a regular expression

"[[\s\S]*". When the corresponding string is “[”, the loop

will never break (line 20).

V. DISCUSSION

Threat to Validity. JustinStr has been built on the

top of Soot and its IR Shimple which may throw error

during execution in practice. And it uses the tool RgxGen
to generate the string data which involves randomness and

so does EvoSuite. Although we have conducted multiple

times to reduce the effect of randomness, they may prevent

a complete reproduction of the experiment. Moreover, the

effectiveness of regular expressions in RQ1 is carried out by

testing, which cannot guarantee the correctness of the regular

expressions. There is currently no more efficient solution,

although some APIs have been proven to be equivalent to

the regular expressions. So the loss and impact on accuracy

of each iteration in the inference process are difficult to

be evaluated. Furthermore, it is unknown how many other

conditional expressions ignored by us affect the SAIS.

Extensive Scenario. The regular expressions in the exper-

iments are the ones where the values of the variables can be

obtained as concrete values after analysis. According to our

statistics based on the programs in Section II-B, this accounts

for 46% (5811/12604). For the remaining 54%, some symbolic

values in them can be specified to generate a combination of

inputs, if they are also input parameters. In addition, the string

parameter mentioned in this paper is a single parameter, but the

approach can be used to characterize any string variable (local

or field one) in the program for the object-oriented instance

construction and the inter-procedural string variable analysis.

Besides, other programming languages also provide string

APIs themselves, such as C++, Python, and our approach can

also be transplanted for the testing of programs written in those

languages.

VI. RELATED WORK

Test Data Generation. EvoSuite [24] is one of state-

of-the-art tools to generate unit test case automatically, and

it adopts a search-based strategy to generate test cases. One

of the seed strategies in EvoSuite is dynamic seeding,

which uses any values observed during execution as the

seeding [44]. This strategy can convert some API methods

and their parameters into dynamic seeds. Randoop [40] is

another tool for automatic test case generation, which uses a

random strategy to generate regression tests. Both tools cannot

generate appropriate test data when involving complex string

API invocation or their combinations. In contrast to them, our

approach can handle both simple and single APIs as well as

complex ones and even their combinations.

String Constraint Solving. There are currently three types

of approaches for string solving constraints based on a survey

[6]. The first one usually is based on the finite state automata

like [16], [17], [27], [32], [48]. The second one is based

on word equivalence and mainly uses the SMT solvers to

solve such as [5], [11], [12], [36], [46]. The last approach

is an expansion-based approach, which simplifies the string

as consecutive character elements like [21], [31], [35]. They

are more for general-purpose string operations than for those

in the JDK. Although the solver [16] claims to support more

syntax than that in SMT-LIB, they support more syntax about

regular expressions, and the syntax about the string API is the

same as that in [3]. Thomé et al. [45] studied string constraint

solving for detecting vulnerability in web applications. They

proposed a search-driven constraint solving technique based on

Ant Colony Optimization (ACO), which complements general-

purpose SMT-solvers. Compared with them, the purpose of

our approach is not to find an exact solution, but to efficiently

characterize string variables to generate strings for testing.

Static Checking and Verification. Several researches focus

on the semantic checking of the regular expressions. [28]

focus on the regular expressions in XML documents and [10],

[14] check the sub-type with both inputs and outputs. [34]

implements 11 checkers for the regular expressions in pattern

matching. In addition, [37] proposes a template in which the

users need to describe the regular expression’s semantics in

natural language and they generate strings to check whether

they can satisfy both the regular expression and its natural

language in the template. The other analysis tools like [7],

[29], [42] can find some simple string-related bugs but doesn’t

pay special attention to those bugs. Our approach is to use

regular expressions to characterize string variables, generate

strings to dynamically trigger bugs to reduce false positives

or improve coverage.

VII. CONCLUSION

String APIs are commonly used in Java programs, yet

error-prone. In this paper, we propose a novel approach to

characterize the string parameter with regular expressions for

string data generation and test case generation. We build an

API-Regex mapping and offer an inference algorithm to fit

the usage of both single string API and their combination.

Evaluation shows that the mapping and the inference algorithm

are effective for the string parameter characterization. And it

also shows that our approach is powerful in both the branch

coverage improvement (+17%) and bug finding (+28%). Fi-

nally we have found 14 new JDK bugs which are all confirmed

by the JDK developers. In the future, we will focus on the

regular expressions with the symbolic value and take the other

types of parameters into account.
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A., RÜMMER, P., AND STENMAN, J. Norn: An smt solver for string
constraints. In International conference on computer aided verification
(2015), Springer, pp. 462–469.

[6] AMADINI, R. A survey on string constraint solving. ACM Computing
Surveys (CSUR) 55, 1 (2021), 1–38.

[7] AYEWAH, N., PUGH, W., MORGENTHALER, J. D., PENIX, J., AND

ZHOU, Y. Evaluating static analysis defect warnings on production
software. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering (2007), pp. 1–8.

[8] BARRETT, C., CONWAY, C. L., DETERS, M., HADAREAN, L., JO-
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