
Androlic: An Extensible Flow, Context, Object, Field, and
Path-Sensitive Static Analysis Framework for Android

Linjie Pan
State Key Lab. of Computer Science

Institute of Software, CAS
Univ. of Chinese Academy of Sciences

Beijing, China
panlj@ios.ac.cn

Baoquan Cui
State Key Lab. of Computer Science

School of Software and
Microelectronics, PKU

Beijing, China
cbq@pku.edu.cn

Jiwei Yan
Tech. Center of Softw. Eng
Institute of Software, CAS

Beijing, China
yanjw@ios.ac.cn

Xutong Ma
State Key Lab. of Computer Science

Institute of Software, CAS
Univ. of Chinese Academy of Sciences

Beijing, China
maxt@ios.ac.cn

Jun Yan∗
State Key Lab. of Computer Science

Institute of Software, CAS
Univ. of Chinese Academy of Sciences

Beijing, China
yanjun@ios.ac.cn

Jian Zhang∗
State Key Lab. of Computer Science

Institute of Software, CAS
Univ. of Chinese Academy of Sciences

Beijing, China
zj@ios.ac.cn

ABSTRACT
Static analysis is widely used to detect potential defects in apps.
Existing analysis tools focus on specific problems and vary in sup-
ported sensitivity, which make them difficult to reuse and extend
for new analysis tasks. This paper presents Androlic, a precise static
analysis framework for Android which is flow, context, object, field
and path-sensitive. Through configuration items and APIs provided
by Androlic, developers can easily extend it to perform custom anal-
ysis tasks. Evaluation on an example program and 20 real-world
apps show that Androlic can analyze apps with high precision and
efficiency.

CCS CONCEPTS
• Theory of computation→ Program analysis;

KEYWORDS
Static Analysis, Android, Sensitivity, Extensible
ACM Reference Format:
Linjie Pan, Baoquan Cui, Jiwei Yan, Xutong Ma, Jun Yan, and Jian Zhang.
2019. Androlic: An Extensible Flow, Context, Object, Field, and Path-Sensitive
Static Analysis Framework for Android. In ISSTA ’19: ACM Symposium on
Neural Gaze Detection, June 03–05, 2019, Woodstock, NY. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Android is a popular mobile operating system, based on which
many applications are developed. In order to detect problems in
Android apps, research community proposed many static analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’19, June 03–05, 2018, Woodstock, NY
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

tools. These tools are developed for different purposes and thus
implemented in various techniques with different precision. As we
know, the precision of static analysis depends heavily on which
sensitivities the tools takes into account. Without loss of generality,
common sensitivities include flow, path and context sensitivity. For
object oriented languages such as Java, we need to consider object
and field sensitivity in addition. Theoretically, more sensitivities
are considered, higher precision the analysis can reach.

Li et al. [10] summarized the number of sensitivity (flow, path,
context, object, field) that popular Android static analysis tools
considered. The result showed that most tools support a few of the
five sensitivities and the number of sensitivity supported by these
tools varies. Hopper [4] and Thresher [3] are the only two tools
that support five sensitivities while they integrate sensitivity into
the algorithm designed for concrete analysis tasks, which make
them difficult to extend.

In viewing of this, we developed Androlic, a static analysis frame-
work for Android which considers flow, context, path, object and
field sensitivity. Our framework is built on top of Soot [9] and
Jimple [13]. For each SootMethod under analysis, it carries out
symbolic execution along its CFG. During symbolic execution, in-
feasible paths are eliminated and the call graph is built on-the-fly. In
order to obtain precise call graph, we build a heap model to process
polymorphism and thus realize object and field sensitivity. Note
that Androlic maintains complete points-to information and change
points-to relation when strong update occurs. For statements con-
taining method invocation, we judge whether the invoked method
is a library method. For a library method, we build dummy object ac-
cording to its return type and class hierarchy relationship supplied
by Soot. For a non library method, Androlic builds concrete context
of it and carries out context-sensitive inter-procedural analysis.

Besides sensitivity, Androlic provides flexible configuration items
and abundant APIs so that developers can easily extend it to ac-
complish their own analysis tasks.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ISSTA ’19, June 03–05, 2018, Woodstock, NY Linjie Pan, Baoquan Cui, Jiwei Yan, Jun Yan and Jian Zhang

2 ANDROLIC
Androlic takes an apk file as input and performs symbolic execution
based on CFG generated by Soot. Figure 1 shows the architecture
of Androlic, which contains three modules as following:

• Preprocessing. Androlic takes an apk file as input, con-
structs the intra-procedural CFG and generates class hierar-
chy relationship via Soot. Considering the lifecycle of An-
droid component, we build a dummy main method for each
Activity as FlowDroid [2] does.

• Object OrientedModeling. The object and field sensitivity
are highly related to the characteristics of object orientation.
On one hand, Androlid constructs store-based heap model
through allocation sites [8]. On the other hand, Androlic
takes this reference into consideration, building an extensive
method context.

• Symbolic Execution. The symbolic execution engine of
Androlic processes the Jimple statement along the intra-
procedural CFG. During the process, infeasible paths are
eliminated and class initialization, which is always ignored [5],
is taken into consideration.

Figure 1: Architecture of Androlic

2.1 Object Oriented Modeling
The characteristics of object orientation is a vital factor that in-
fluences the precision of Android static analysis. In fact, object
orientation is not only related to object and field sensitivity, but
also affects the construction of call graph and thus the precision of
inter-procedural analysis.

Heap Abstraction. The heap model in Androlic is store-based.
We maintain a map from reference variables to allocation sites. In
Jimple, the mapping relation can only be initiated in an AssignStmt
where the left operand represents reference variable and the right
one denotes allocation site.

There are two types of allocation sites in Androlic, i.e., explicit
and implicit. According to the grammar of Jimple, we take three
types of expressions, i.e., NewExpr, NewArrayExpr and NewMultiAr-
rayExpr as explicit allocation sites where we can clearly assure the
type of newly created objects. The InvokeExpr of library method
is taken as the implicit allocation site. It is called ‘implicit’ since we
can not obtain the body of library method and thus can not infer
the concrete type of objects if the return type of the library method
has subtypes. For implicit allocation sites, we randomly appoint
the type of newly created object from the possible types deduced
through class hierarchy relationship.

There are four types of reference variables in Jimple, i.e., Ar-
rayRef, StaticFieldRef, InstanceFieldRef and Local. For a
local variable or StaticFieldRef, we simply build a mapping re-
lation from it to the allocation sites denoted by the right operand:
Var → H . For ArrayRef and InstanceFieldRef, we define them
as a tuple ⟨base,op⟩. In ArrayRef, base denotes name of array and
op denotes the index. In InstanceFieldRef, base is the variable
that holds a field and op is the field. The mapping relation is denoted
as: H × op → H . The first H denotes the allocation site where
base points to, and the secondH denotes the allocation site of the
right operand.

Extensive Method Context. In Java, the invocation of non
static method is in the form ofvar .methodName(parameter)where
var is a reference variable pointing to an allocation site. In the
invoked method, var is denoted by this reference. Considering
the characteristics of encapsulation, the invoked method could
manipulate the field ofvar . If we can not determine the heap object
which var points to, the field sensitivity can not be guaranteed.
Moreover, the type of heap object which var points to decides
which method will be invoked at the call site [1]. That is to say,
the precision of call graph construction highly depends on how we
process var .

Therefore, when dealing with invocation of non static method,
we not only replace the formal parameters with actual parameters,
but also replace formal this with actual allocation site to build an
extensive context for the invoked method. In other words, var is
taken as a special formal parameter of the invoked method. We can
easily replace var with the heap object it points to since Androlic
maintains a mapping from reference variables to allocation sites as
mentioned above.

2.2 Symbolic Execution
The symbolic execution engine processes Jimple statements along
the CFG of input method (dummymain method is the input method
by default), calculating symbolic value of base type variables and
updating the mapping from reference variables to allocation sites.
For statements containing invocation of non library method, we
save the status of current method and switch into the invoked
method with extensive context introduced in section 2.1.

Class Initialization. The Java compiler encapsulates static code
block and non final static field of a class into a special method called
clinit , which will be invoked when the class is initialized. According
to the semantics of Java, a class will be initialized whenever its
object is first instantiated or its static method/field is used. Besides,
the parent class must be initialized before the initialization of its
subclasses. During symbolic execution, Androlic checks whether
the class appearing in current statement is initialized and invokes
clinit if the class has not been loaded yet.

Condition Checking. For a condition statement, Androlic first
calculates the value of variables contained in the statement. If all
variables correspond to concrete values, we can decide the satis-
fiability of the condition immediately and thus remove infeasible
paths. Here, concrete value includes numeric constant, string con-
stant, null or explicit allocation site. Otherwise, Androlic takes all
successive statements as feasible statements and saves the symbolic
value of variables for potential extensibility.

Androlic: An Extensible Flow, Context, Object, Field, and Path-Sensitive Static Analysis Framework for AndroidISSTA ’19, June 03–05, 2018, Woodstock, NY

2.3 Usage
Users can perform custom static analysis tasks through setting up
configuration items and extending APIs provided by Androlic.

Configuration. As we know, path-sensitivity can easily raise
path-explosion when the scale of program grows. In view of this,
Androlic provides configuration items to limit the maximum path
number during symbolic execution. For the same purpose, there
are also configuration items to limit the maximum time of loop
unrolling and the maximum level of recursive invocation. Users can
also set the maximum running time of analyzing an apk. Moreover,
users can also appoint a method instead of the dummymain method
as the input method of symbolic execution engine. Configuration
items of Androlic and their default values are listed in Table 1.

Table 1: Configuration Items of Androlic
Configuration Item Default
MaxPathNum 40000
MaxRecursionTime 0
MaxUnrollingTime 1
MaxRunningTime 30 minutes
EntryMethod DummyMainMethod

Extensibility. By implementing APIs of Androlic, developers
can perform different static analysis tasks according to concrete sce-
narios. Firstly, developers can define custom approaches to process
library method invocation. As mentioned above, the invocation
of a library method is taken as implicit allocation site in our heap
model by default. By extending Androlic, users can replace implicit
allocation sites with explicit ones to obtain more accurate analysis
result. Secondly, users can add custom operations at each step of
symbolic execution. The symbolic execution engine simulates the
running process of program and users can instrument the engine to
record specific information. Last but not least, Androlic maintains
the symbolic expression of variables so that users can leverage
constraint solver to further remove infeasible paths and generate
test cases.

3 CASE STUDY
In this section we demonstrate the characteristics of Androlic
through an example program.

In Listing 1, we define three classes: Adult, University and
Person. Note that Person is the subclass of Adult and it contains
a field graduation whose type is University.

Listing 1: Classes under Analysis
1 package com;
2 public class Adult {
3 public static int minAge = 18;
4 }
5 class University{
6 private String name;
7 public String getName() {
8 return name;
9 }
10 public University(String name) {
11 this.name = name;
12 }
13 }
14 class Person extends Adult {
15 private int age;
16 private University graduation;
17 public University getGraduation() {
18 return graduation;
19 }

20 public int getAge() {
21 return age;
22 }
23 public void setGraduation(University graduation) {
24 this.graduation = graduation;
25 }
26 public Person(University university, int theAge) {
27 this.graduation = university;
28 this.age = theAge;
29 }
30 }

In Listing 2, we define a method as the entry method for symbolic
execution engine of Androlic. In the entry method, we first declare
three University objects and two Person objects. In the following
code, we make manipulation on these objects.

Listing 2: Entry Method of Symbolic Execution
1 public void entryMethod() {
2 University peking = new University("peking");
3 University tsinghua = new University("tsinghua");
4 University USTC = new University("USTC");
5 Person ming = new Person(peking, 21);
6 Person hong = new Person(tsinghua, 20);
7 if(Adult.minAge == 18) {
8 System.out.println("min age of adult is 18");
9 } else {
10 System.out.println("min age of adult is not 18");
11 }
12 if(ming.getAge() == hong.getAge()) {
13 System.out.println("They have the same age");
14 } else {
15 System.out.println("They do not have the same age");
16 ming.setGraduation(USTC);
17 ming.setGraduation(tsinghua);
18 if(ming.getGraduation() == hong.getGraduation())
19 System.out.println("Their graduate is the same");
20 else
21 System.out.println("Their graduate is different");
22 }
23 }

There are many non library method invocations in Listing 2, each
invocation will trigger inter-procedural context-sensitive analysis.
We take line 5 of Listing 2 whereminд is appointed to a instantiated
Person object as example. Androlic invoked the constructormethod
of Person and its parent class Adult. Here, indent denotes that a
new method is invoked:
1 specialinvoke $r3.<com.Person:void <init>(com.University,int)>($r4, 21)
2 $r0 := @this: com.Person
3 $r1 := @parameter0: com.University
4 $i0 := @parameter1: int
5 specialinvoke $r0.<com.Adult: void <init>()>()
6 $r0 := @this: com.Adult
7 specialinvoke $r0.<java.lang.Object: void <init>()>()
8 return
9 specialinvoke $r0.<com.Adult: void <init>()>()
10 $r0.<com.Person: com.University graduation> = $r1
11 $r0.<com.Person: int age> = $i0
12 return
13 specialinvoke $r3.<com.Person:void <init>(com.University,int)>($r4, 21)

In line 7 of Listing 2, the static field minAge of Adult is first used
while Adult has not been initialized. As mentioned in section 2.2,
Androlic invokes the clinit method of Adult as the following code
shows (line 2 and line 3 are statements of clinit):
1 $i0 = <com.Adult: int minAge>
2 <com.Adult: int minAge> = 18
3 return
4 $i0 = <com.Adult: int minAge>

There are three condition statements in the entry method which
can generate 6 potential paths in total. Androlic judges the satisfia-
bility of each condition statement and generates the only feasible
path:

ISSTA ’19, June 03–05, 2018, Woodstock, NY Linjie Pan, Baoquan Cui, Jiwei Yan, Jun Yan and Jian Zhang

1 $i0 = <com.Person: int minAge>
2 if $i0 != 18 goto $r6 = <java.lang.System: java.io.PrintStream out>
3 $r6 = <java.lang.System: java.io.PrintStream out>
4 virtualinvoke $r6.<java.io.PrintStream: void

println(java.lang.String)>("min age of adult is 18")
5 $i0 = virtualinvoke $r3.<com.Person: int getAge()>()
6 $i1 = virtualinvoke $r2.<com.Person: int getAge()>()
7 if $i0 != $i1 goto $r6 = <java.lang.System: java.io.PrintStream out>
8 $r6 = <java.lang.System: java.io.PrintStream out>
9 virtualinvoke $r6.<java.io.PrintStream: void

println(java.lang.String)>("They do not have the same age")
10 virtualinvoke $r3.<com.Person: void setGraduation(com.University)>($r1)
11 virtualinvoke $r3.<com.Person: void setGraduation(com.University)>($r5)
12 $r1 = virtualinvoke $r3.<com.Person: com.University getGraduation()>()
13 $r4 = virtualinvoke $r2.<com.Person: com.University getGraduation()>()
14 if $r1 != $r4 goto $r6 = <java.lang.System: java.io.PrintStream out>
15 $r6 = <java.lang.System: java.io.PrintStream out>
16 virtualinvoke $r6.<java.io.PrintStream: void

println(java.lang.String)>("Their graduate is the same")

The printed message in line 4, 9 and 16 prove that Androlic process
method invocation and object/field correctly. In other words, An-
drolic is context, object and field-sensitive. Note that the statements
of invoked method are omitted due to the limit of space.

4 EVALUATION
To evaluate the effectiveness of Androlic, we collect 20 real-world
apps from F-Droid [6] and Wandoujia app market [14]. Androlic
analyzes these apps under default configuration as Table 1 shows,
which means the dummy main method of each Activity is taken as
the entry method of symbolic execution engine.

Table 2 shows the result of experiment. The column App and Size
denotes the name and size (KB) of apps under analysis respectively.
The first ten apps are collected from F-Droid and the latter ten apps
come from Wandoujia. The column invalid and valid denotes the
number of analyzed Activities whose path number is equal or larger
than and less than 40000 (MaxPathNum) respectively. The column
Average denotes the average number of paths of valid Activities.
The column Min and Max denote the minimum and maximum
number of paths of valid Activities respectively. The column Time
denotes the analysis time (second) of each app. Apparently, the
path num of most Activities is less than the threshold and Androlic
can analyze these apps within 30 minutes (MaxRunningTime).

Table 2: Results of Symbolic Execution on Real-world Apps

App Size
Activity Path Information

Time
invalid valid Average Min Max

2048 859 0 1 9411 9411 9411 6
24game 2540 0 1 11 11 11 1
AAT 2327 0 18 3 3 3 1
ABCore 1205 0 9 269 7 1121 1
AcrylicPaint 451 0 4 9 4 11 1
ActivityDiary 3524 1 10 2978 6 16535 206
aGrep 344 0 6 4761 19 12803 12
APhotoMap 1406 0 12 838 5 9986 34
ATimeTracker 1309 2 3 57 5 163 24
webSearch 1898 0 3 5376 4013 6195 15
danshouhuahua 2389 1 55 9059 7 14711 133
googleearth 12785 0 12 3082 11 10000 124
gugepinyin 18136 1 24 1126 6 19889 29
jijianhuilv 12414 2 19 4196 7 9227 63
lijidai 12883 5 29 7372 4 32403 313
paizhaofanyi 9121 0 40 4986 7 10000 229
pingduoduo 18674 0 109 2794 11 6923 264
wenzisaomiao 13899 1 8 3267 11 7019 119
youdaobeidanci 15110 3 47 9337 3 14713 253
zhaopianhuifu 1954 2 21 831 7 7159 34

5 RELATEDWORK
Symbolic execution is a static analysis technique which replaces
concrete value with symbolic value to execute the program. Sym-
bolic PathFinder (SPF) [12] is a popular static analysis tool for Java
bytecode that combines symbolic execution with model checking.
However, SPF did not consider the characteristics of Android such
as lifecycle and entry-point. Recently, some researchers leveraged
symbolic exeuction in Android testing [7, 11, 15].

Compared with previous work, Androlic achieves full sensitivity
and shows strong extensibility which not only can be used in test
case generation, but also other analysis tasks such as bug detection
by adding self-defined operations into the symbolic engine. More-
over, Androlic takes lifecyle, callback-methods and entry-points
into consideration, constructing dummy main method for Android
analysis.

6 CONCLUSION
This paper presents a flow, context, object, field and path-sensitive
static analysis framework, which considers the characteristics of
object orientation. With flexible configuration items and abundant
APIs, users can easily implement static analysis tasks under specific
requirements. In the future, wewill extend the framework to process
more Java and Android library methods to achieve higher precision.

REFERENCES
[1] Gagan Agrawal. Demand-driven construction of call graphs. In CC, pages

125–140, 2000.
[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid:
Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis
for Android Apps. In PLDI, pages 259–269, 2014.

[3] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Thresher: precise
refutations for heap reachability. In PLDI, pages 275–286, 2013.

[4] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Selective control-
flow abstraction via jumping. In OOPSLA, pages 163–182, 2015.

[5] Maria Christakis and Christian Bird. What developers want and need from
program analysis: an empirical study. In ASE, pages 332–343, 2016.

[6] F-Droid. https://f-droid.org.
[7] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. Android

testing via synthetic symbolic execution. In ASE, pages 419–429, 2018.
[8] Vini Kanvar and Uday P. Khedker. Heap abstractions for static analysis. ACM

Comput. Surv., 49(2):29:1–29:47, 2016.
[9] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The Soot frame-

work for Java program analysis: a retrospective. In CETUS, volume 15, page 35,
2011.

[10] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. Static analysis of
android apps: A systematic literature review. Information & Software Technology,
88:67–95, 2017.

[11] Nariman Mirzaei, Sam Malek, Corina S. Pasareanu, Naeem Esfahani, and Riyadh
Mahmood. Testing android apps through symbolic execution. Software Engineer-
ing Notes, 37(6):1–5, 2012.

[12] Corina S. Pasareanu, Willem Visser, David H. Bushnell, Jaco Geldenhuys, Peter C.
Mehlitz, and Neha Rungta. Symbolic pathfinder: integrating symbolic execution
withmodel checking for java bytecode analysis. Autom. Softw. Eng., 20(3):391–425,
2013.

[13] Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying Java Bytecode for
Analyses and Transformations, 1998.

[14] Wandoujia. https://www.wandoujia.com.
[15] Chao-Chun Yeh, Han-Lin Lu, Chun-Yen Chen, Kee Kiat Khor, and Shih-Kun

Huang. Craxdroid: Automatic android system testing by selective symbolic
execution. In SERE-Companion Volume, pages 140–148, 2014.

https://f-droid.org
https://www.wandoujia.com

	Abstract
	1 Introduction
	2 Androlic
	2.1 Object Oriented Modeling
	2.2 Symbolic Execution
	2.3 Usage

	3 Case Study
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

