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Abstract

Android is based on an event-drivenmodel, which hides themain

method, and is driven by the lifecycle methods and listeners from

user interaction. FlowDroid, constructs a dummymainmethod stat-

ically emulating the lifecycle methods. The dummy main method

has been widely used by FlowDroid and also other Android ana-

lyzers as their entry points. However, the existing dummy main

method is not designed for path-sensitive analysis, whose paths

may be unsatis�able. Thus, when using original dummymain meth-

ods, path-sensitive analysis, e.g., symbolic execution, may su�er

from infeasible paths. In this paper, we present DMMPP, the �rst

dummy main method generator for Android applications with path-

sensitive predicates, and the corresponding path condition is satis-

�able. DMMPP constructs dummy main methods for the four types of

components in an application with a more realistic simulation for

the lifecycle methods. The experiment demonstrates the bene�ts of

our tool for path-sensitive analyzers, improving 28.5 times more

explored paths with a low time overhead.
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• Theory of computation→ Program analysis.
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1 Introduction

Over the past decade, Android smart devices have become an

indispensable part of our lives. The Android system and its appli-

cations are widely used in smartphones, tablets, TVs, robots, cars

∗Corresponding Authors.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3685302

and other devices due to its open source nature, rich application

ecosystem, hardware compatibility and user customizability.

In recent years, researchers have conducted extensive and in-

depth research on Android applications in various aspects. Un-

like Java programs, an Android application does not have a main

method, and the application is driven by various events, such as life-

cycle methods and callbacks of user operations, from the Android

operating system and framework. FlowDroid, a precise context,

�ow, �eld, object-sensitive and lifecycle-aware taint analysis frame-

work for Android apps [3], constructs a dummy main method as

the entry point for analysis, providing infrastructure for many

works [17]. The dummy main method simulates multiple entry

points statically, such as Activity, Service, BroadcastReceiver, Con-

tentProvider and Fragment, asynchronously executing components

and callbacks from user operations.

Since FlowDroid uses the IFDS algorithm, a path-insensitive

approach, the dummy main method generated by FlowDroid does

not consider whether the path condition is satis�ed. However, for

path-sensitive analysis [12, 16], it can a�ect the analysis accuracy,

resulting in false positives and false negatives. For example, pred-

icates generated by FlowDroid for a dummy main method are

?1 (8 == 0), ?2 (8 == 1), and ?3 (8 == 2), whose satis�ability de-

pends on the same variable 8 , which is path-insensitive. When a

path condition in the method is ?1 ∧ ?2 ∧ ?3, it is obviously unsat-

is�able, causing the lifecycle method unreachable.

In this paper, we propose DMMPP to construct the dummy main

method for Android applications with path-sensitive predicates,

which can form a satis�able path condition. It takes an APK and

the lifecycle speci�cations of components as inputs, built on the

top of FlowDroid. It models the lifecycle of components with a

uni�ed lifecycle graph. For each component, DMMPP constructs the

dummy main method with path-sensitive predicates after the life-

cycle method complementing, according to its lifecycle graph, the

instrumentation syntax and the generation algorithm. DMMPP can

be used by analyzers with both path-sensitive approaches and

path-insensitive ones, intrusively via an API invocation or non-

intrusively via the APK output after a command line call.

2 Background

We will introduce the dummy main method and use an example

to show the path-insensitive predicates generated by FlowDroid

and how DMMPP re�nes the predicates for path-sensitive analyzers.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1: Activity’s Lifecycle and CFG of Its Dummy Main

Method Modelled by FlowDroid

2.1 Dummy Main Method

Android is based on an event-driven model, which hides the

main method, and is driven by the lifecycle methods and listeners

from user interaction. FlowDroid statically models the lifecycle

of the component in the Android framework with the dummy

main method as the entry point for its taint analysis and also for

other analyzers. Figure 1 shows the lifecycle of an Activity and the

control �ow graph (CFG) of its dummy main method modelled by

FlowDroid. During the construction of the dummy main method,

FlowDroid proposes opaque predicates to represent the branches

in the method, denoted as ?8 , where 8 ∈ {1,2,3,4,5}.

2.2 Motivating Example

The opaque predicate, ?8 , represents whether the integer variable

intCounterVar equals to an integer conditionCounter. Each time an

opaque predicate is inserted by FlowDroid, the conditionCounter is

incremented by 1, i.e., conditionCounter++ [1]. Figure 2 shows the

simpli�ed code snippet with predicates in the dummy main method

generated by FlowDroid (lines 2-8), which is path-insensitive. All

predicates share a single variable 8 , then a path condition consist-

ing of them will be unsatis�able. When collecting a path with the

constraint, ?1 (8 == 0) ∧ ?2 (8 == 1) ∧?3 (8 == 2), a path-sensitive

analyzer will discard this path since the constraint is unsatis�able.

This modelling is invalid for the path-sensitive analysis since life-

cycle methods are reachable de�nitely.

1 // Path-insensitive Predicates modelled by FlowDroid

2 void dummyMain(){

3 int i = 0;

4 if(i == 0){ // p1 : i == 0

5 if(i == 1){ // p2 : i == 1

6 if(i == 2){ // p3 : i == 2

7 ...

8 }}}}

9 // Path-sensitive Predicates

10 void dummyMain(boolean[] bArr)

11 if(bArr[0]){ // p1 : bArr[0]

12 if(bArr[1]){ // p2 : bArr[1]

13 if(bArr[2]){ // p3 : bArr[2]

14 ...

15 }}}}

Figure 2: Predicates in Dummy Main Method
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Figure 3: Overview of DMMPP

The goal of DMMPP in this paper is to construct the crystal pred-

icates for the dummy main method to re�ne the path-insensitive

ones introduced by FlowDroid for the path-sensitive analyzers.

DMMPP uses the boolean variables from parameters representing the

predicates. To reduce the number of parameters, DMMPP wraps the

parameters with an array container. The dummy main method with

path-sensitive predicates generated by DMMPP is shown in Figure 2

(lines 10-15). Whether the path condition, ?1 ∧?2 ∧?3, is satis�able

will depend on the elements in the input boolean array 1�AA . The

path-sensitive predicates will navigate the path exploration in the

lifecycle of a component to bene�t static analysis.

3 DMMPP

Figure 3 shows the architecture of DMMPP. It is built on the top

of FlowDroid and its intermediate representation (IR) Jimple, and

requires an APK and the lifecycle speci�cations of components

as inputs. It models the lifecycle of components with a uni�ed

lifecycle graph. With the IR and the class hierarchy (CH), DMMPP

can recognize the components in the APK. For each component,

DMMPP complements its non-explicitly inherited lifecycle method

to explicitly indicate component state and constructs the dummy

main method with path-sensitive predicates after the complement,

according to its lifecycle graph, the syntax and the generation algo-

rithm. A path-sensitive analyzer can use the dummy main method

generated by DMMPP directly or use the APK after the persistence

indirectly.

3.1 Model

For the convenience of expression, we formalize a component

lifecycle graph with corresponding methods, and then show how

to use it as input to generate the dummy main method with the

instrumentation syntax.

Definition 3.1.1. Component Lifecycle Graph (CLG). A com-

ponent lifecycle graph is a directed graph, denoted as

�!� = ⟨#, �,⊤,⊥⟩

where

• # is a set of nodes and a node represents a lifecycle method or

a nop instruction;

• � ⊆ # × # , � is a set of edges;

• ⊤ ∈ # , ⊤ is the start node;

• ⊥ ∈ # , ⊥ is the end node.

We assume that CLG contains a unique ⊤ node and a unique ⊥

node, and for any node #8 in CLG, there exist directed paths from

⊤ node to #8 and from #8 to ⊥. We call a node a join node if it

has more than one predecessor and a branch node if it has more

than one successor. We also assume that a branch node has only

two successors. If a lifecycle graph has a node with more than two

1827
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Name:
�∈ (0...I�.../$<>)∗

name(A) Type:
name(T)
type(T)

Variable:
type(T) name(V)

var(T, V) ArrayType:
type(T)

arrayType(T)

Expression:
instruction(E)

instruction(exp(E))
Return: −

instruction(returnVoid())

Program:
instruction(I) program(P)

program(I,P)
New:

type(T)
instruction(new(T))

IfStmt:
exp(E) type(B) 8B 1>>;40=

instruction(ifStmt(B,E))
Goto:

exp(E)
instruction(Goto(E))

Load:
var(Index, ARR, Ret) ArrayType(Arr) type(Index) 8B 8=C464A

instruction(load(Arr,Index,Ret))

Class:
name(Name) type(Super) var(Field) fun(Sign)

class(Name,Super,Field,Sign)

Function:
name(Sign) var(Arg) program(Body)

fun(Sign,Arg,Body)

Invocation:
var(Base) name(Sign) var(Arg) var(Ret)

instruction(call(Base,Sign,Arg,Ret))

InsertExpr:
exp(E1 ) fun(Sign) exp(E2 )

insertExpr(Sign,E1,[05 C4A ],site(�2 ) )

Figure 4: Syntax for Generation.

successors, a nop instruction node is introduced and inserted to

split the node. For example, the node onStop() in Figure 1(a) has

three successors, when constructing the CLG, it should be split

with a nop instruction node to ensure that each branch node has

two successors like the node onStop() in Figure 1(b).

3.2 Generation

With the CLG, the lifecycle of each component, such as Activity,

Service, BroadcastReceiver, Content Provider and even Fragment,

can be expressed uniformly. Since the lifecycle methods of a com-

ponent are closely related to its state [11], and some bug detection

depends on its state [6, 9, 15], if a lifecycle method is not explic-

itly inherited, DMMPP will complement the method with the parent

method invocation, such as void onDestroy(){super.onDestroy();} . DMMPP

obtains the components and callbacks based on FlowDroid by pars-

ing the XML resource �les from the APK.

Syntax. DMMPP uses the syntax shown in Figure 4 to process

the dummy main method. For each rule in it, the part below the

horizontal line is the operation command and the above one is the

restriction. The basic rules, such as Name, Type, ArrayType, Re-

turn, Program, Expression, New, Class, Function, Invocation

and InsertExpr, are easy to understand. DMMPP uses the instruc-

tions IfStmt and Goto to express the branch and the loop in the

CLG. In particular, for the path-sensitive predicates, DMMPP needs

the operation Load to obtain the i-th element of the predicate array.

Construction.With the syntax, DMMPP constructs the dummy

main method for each component according to the generation al-

gorithm shown in Algorithm 1 based on the IR Jimple. It takes a

component and its CLG as inputs. Firstly, DMMPP instantiates the

component, which is the caller of the lifecycle methods in the CLG

(line 4). Then, it traverses the CLG in depth-�rst order with a stack,

generating an invocation statement for each node with the lifecycle

method (lines 6-20). The actual arguments required in the invoca-

tion statement are also taken from the formal parameters of the

dummy main method, simpli�ed as getArgsFromParameters(...) (line

14). Thirdly, DMMPP generates the branch statement and the goto

statement according to the CLG and inserts them at the correspond-

ing position (lines 24-40). For the branch statement, DMMPP loads

the predicate from the parameter array with an index, which can

be assigned the value true or false by a path-sensitive analyzer to

Algorithm 1: Dummy Main Method Generation

Input: 2><?>=4=C , 2;6

1 5 D=← NULL, 0A6B ← ∅, 1>3~← ∅, =>34 ← 2;6.⊤, BC02: ← ∅;

2 20;;4A ← NULL,<0? ← ∅; //<0? ⟨Node, Expression⟩

3 BC02: .push(=>34);

4 20;;4A ← instruction(new(type(component)));

5 // generate method invocations

6 while BC02: is not empty do

7 =>34 ← BC02: .pop();

8 BC<C ← NULL;

9 if =>34 is ⊥ then

10 BC<C ← instruction(returnVoid);

11 else if =>34 is not ⊤ then

12 if =>34 .m is nop instruction then

13 BC<C = instruction("nop");

14 ;8BC ← getArgsFromParameters(=>34 .m, 0A6B);

15 BC<C ← instruction(call(20;;4A ,=>34 .m,;8BC ,NULL));

16 <0? .put(=>34 , 20;; );

17 1>3~.add(BC<C );

18 <0? .put(=>34 , BC<C );

19 BD224BB>AB ← 2;6.successorOf(=>34);

20 BC02: .push(BD224BB>AB);

21 // insert if- and goto- statements

22 ?A43820C4�=34G ← 0;

23 ?A43820C4B ← getPredicatesFromParameters(0A6B);

24 for =>34 ∈ 2;6.N do

25 2DAA4=C ←<0? .get(=>34);

26 =4GC ← 1>3~.getNext(2DAA4=C );

27 if =>34 is branch node then

28 // crystal predicate

29 load(predicates, predicateIndex, ?A43820C4);

30 ?A43820C4�=34G ++;

31 for BD22 ∈ 2;6.successorOf(=>34) do

32 if =4GC is not BD22 then

33 =4GC ← BD22 ;

34 8 5 (C<C ← instruction(ifStmt(?A43820C4 , =4GC ));

35 insertExpr(1>3~, 8 5 (C<C , "after", 2DAA4=C );

36 BD22 ← 2;6.successorOf(=>34);

37 =4GC ←<0? .get(BD22);

38 if 2DAA4=C is not ⊥ ∧ =4GC is not NULL then

39 6>C>(C<C ← instruction(Goto(=4GC ));

40 insertExpr(1>3~, 6>C>(C<C , "after", 2DAA4=C );

41 5 D=← fun("dummyMainMethod",0A6B ,1>3~);

42 return 5 D=;

control the exploration along the di�erent branches or paths. Fi-

nally, it returns the dummy main method, which will be added into

the component class as an entry method for the analyzer directly

(lines 41-42). DMMPP also instruments the callbacks declared in the

component into the dummy main method, such as click listeners,

key event listeners and so on. In addition, DMMPP can also write the

generated IR back to the APK with the support of FlowDroid as its

output, bene�ting the path-sensitive static analyzer indirectly.

1828
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Table 1: Bene�ts for Analyzer

App #C
Explored Paths Construction Time (ms)

FL D Δ FL D Δ

F-
D
ro
id

app.fedila 6 6 12 +6 235 2960 2725

ch.bailu.a 17 17 37 +20 414 2,038 1,624

com.asdoi. 6 6 12 +6 72 2,262 2,190

com.gimran 13 13 30 +17 199 421 222

com.mobile 14 14 153 +139 1,111 516 -595

com.tuyafe 5 5 10 +5 30 1,724 1,694

com.ubersp 1 1 13 +12 40 5 -35

jp.takke.c 7 7 14 +7 42 1,932 1,890

net.gitsai 8 8 2,104 +2,096 2,775 534 -2,241

xyz.myachi 8 8 1,588 +1,580 6,991 2,377 -4,614

G
o
o
g
le
P
la
y

appnewness 7 7 35 +28 191 554 363

com.alb.pl 1 1 5 +4 12 4 -8

com.e.ulil 5 5 10 +5 32 460 428

com.pinayr 11 11 293 +282 2,094 187 -1,907

f.fajrak.b 9 9 46 +37 278 517 239

it.discors 9 9 49 +40 306 998 692

kick.wpapp 8 8 40 +32 240 486 246

kr.ieodo.a 5 5 10 +5 27 530 503

net.easyjo 7 7 14 +7 42 1,427 1,385

usd.aleavt 3 3 99 +96 459 59 -400

Total 150 150 4,574 +4,424 15,590 19,991 4,401

3.3 Usage

DMMPP is open source, and its latest version and executable JAR

�le are publicly available 1. There is also a video demonstrating

DMMPP with the YouTube link on Github. DMMPP can be used as an

API library intrusively, which will be a precursor of an Android

static analyzer based on Soot/FlowDroid. It can also be used as

an independent, command line tool non-intrusively to generate

the dummy main method with the path-sensitive predicates and

output the APK with the dummy main method, which can be used

for other Android static analyzers or may be converted to a JAR

�le as an input of a Java static analyzer. DMMPP has been integrated

into Androlic [10], which is an extensible �ow, context, object,

�eld, and path-sensitive static analysis framework for Android and

DMMPP can also been used for other analyzers.

4 Evaluation

To evaluate the e�ectiveness of DMMPP, we randomly collect 20

real-world apps, 10 of which are from F-Droid [4] and the other

10 from Google Play [7], which is also publicly available at Github.

We choose Androlic to observe the bene�ts brought by DMMPP,

since its approach is path-sensitive. We take the dummy main

method for each component generated by FlowDroid (denoted as

‘FL’ in Table 1) and the one generated by DMMPP (denoted as ‘D’) as

its inputs respectively. The con�guration of Androlic contains a

maxLoopUnrollNumber with a value of 1 and a timeout threshold

of 5 minutes. The experiment is conducted under the environment

of JDK-1.8, where the operating system is Windows 11 with 4 cores

(Intel (R) Core(TM) i7-10510U) and 32G RAM.

Table 1 shows the number of components (denoted as “#C”), the

number of feasible paths and the construction time for dummy

main methods, excluding the parsing time of the application. The

1https://github.com/cuixiaoyiyi/DMMPP

symbol ‘Δ’ represents the increase in the number of feasible paths

and the time overhead brought by DMMPP.

It can be seen that DMMPP bene�ts the path-sensitive analyzer

with about 28.5 (4,424/150 – 1) times more feasible paths than

FlowDroid from the dummy main method with a time overhead

of only 4.4 seconds totally. FlowDroid contributes so few feasible

paths in its dummymain method because “Wemay skip the complete

component” [2],i.e, if(i==0){ return; }else{ lifecycle method invocations } .

For each component, the construction time of FlowDroid for the

dummy main method is about 104 milliseconds, and DMMPP con-

tributes an additional 28.5 (4,424/150 – 1) times feasible paths with a

time consumption 29.3 milliseconds on average. DMMPP takes more

time because it complements lifecycle methods and constructs a

more complete dummy main method.

In summary, the evaluation demonstrates that DMMPP can bene�t

the path-sensitive analyzer via the dummy main method generated

by it with the path-sensitive predicates, providing many feasible

paths with a very low time overhead as expected.

5 Related Work

The most related work to the dummy main method generation

is FlowDroid. The dummy main method provided by it works for

the path-insensitive analysis, such as the �ow-sensitive analysis,

but hinders the path-sensitive analysis, such as symbolic execu-

tion, since the predicates in a path condition can not be satis�ed

which violates the reachability of lifecycle methods. Compared

to FlowDroid, DMMPP complements the non-explicitly inherited

lifecyle methods and provides the path-sensitive predicate, which

can satisfy the reachability of lifecycle methods as every lifecycle

method is reachable declared by Android platform. It works for both

path-sensitive analysis approaches and path-insensitive ones. A

review has found that analysis approaches for Android applications

can be improved with more precise techniques to make them more

applicable [14], which path-sensitive analysis can do. Therefore,

it can help the path-sensitive work, such as taint analysis of ar-

rays [8], malicious application detection [18], security vulnerability

detection [13] and estimation of API calls [5].

6 Conclusion

We have introduced DMMPP, which constructs the dummy main

method with path-sensitive predicates for Android application anal-

ysis. It provides multiple ways for analyzers to use it. The experi-

ment demonstrates the bene�ts of DMMPP for path-sensitive analyz-

ers. Directions for future work include using DMMPP for analyzers

to �nd real bugs in APKs and merging the same parameters from

di�erent methods/callbacks to reduce the parameter redundancy

of the dummy main method.
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