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Abstract—As a widely used Android asynchronous component,
AsyncTask is used to run time-consuming tasks. However, the 
misuse of AsyncTask will cause defects, i.e., crashes and 
memory leaks. Based on static analysis, existing approaches
cannot accurately detect AsyncTask-related defects and
produce many false positives since some paths are not 
reachable in practice. In this paper, we propose a dynamic 
detection method based on instrumentation, Monkey execution 
and log analysis to detect these defects. And we implement a 
tool AD2Checker based on the proposed method. Our 
experiment on 19 real-world apps shows that it has found 145 
bugs and has no false positives. Moreover, it triggers crashes 
caused by misuse of AsyncTask.

Keywords- Android Application; AsyncTask; Dynamic 
Analysis; Defect Detection;

I. INTRODUCTION 

Android apps are the most widely used mobile apps in
the market currently. Android is a widely used operating
system based on the single thread and event-driven model,
where the single thread (also called UI thread or main thread) 
instantiates GUI components to dispatch events and 
asynchronous thread (background threads) process time-
consuming tasks (i.e., network access, database queries).
This mechanism can improve the response speed of Android 
applications. 11

To ease asynchronous programming, Android provides 
several packaged asynchronous components such as 
IntentService [31], HandlerThread, AsyncTask [22] and
existing studies show such packaged asynchronous 
components are indeed widely used in Android apps, and 
AsyncTask accounts for the majority due to its simplicity of 
use [5].

AsyncTask is mainly suitable for short operations, and 
five callback functions are provided to ease asynchronous 
programming [22]. Programmers invoke the execute()
function to start an asynchronous thread and invoke the 
cancel() function to try to end the background thread. The 
execution of AsyncTask is usually time-consuming. After it 
is executed, the state of the UI or Activity may have been 
changed or even destroyed and at this time, the callback of 
AsyncTask is trying to update the UI and there will be a 
problem; or AsyncTask is holding the reference of Activity 
all time which will cause a memory leak; or the Activity has

1 * Corresponding author

been discarded but the task in the AsyncTask was not 
terminated in time, then a waste of resources will happen.

Based on these, AsyncChecker [5] proposes five misuse 
patterns (i.e., Strong Reference, NotCancel, NotTerminate, 
EarlyCancel, RepeatStart) to describe these defects and uses 
static analysis to detect them. Although it has found a lot of 
real errors, there are still some complex scenarios that cannot 
be accurately detected and some false positives will appear.
There are many reasons. For example, it has performed static 
analysis but does not have strict symbolic execution and
constraint solving, so some unreachable paths are still 
regarded as bug points; in addition, partial inter-process 
analysis was carried out to detect bugs, so that some real path 
information was discarded.

To reduce false positives in AsyncChecker, we propose a 
dynamic method to detect the misuse of asynchronous 
component AsyncTask and implement a tool called 
AD2Checker to automatically detect these errors. 

AD2Checker first implements instrumentation containing
the execution information of the program and the log 
printing statements of AsynTask related operations based on 
the Soot [3] framework and the intermediate representation 
of Jimple in some points such as the Activity lifecycle 
methods and the AsyncTask operation methods, addressing 
several bug patterns mentioned in AsyncChecker, and then 
writes the instrumented code back into the APK, packs it and 
signs to obtain a new APK.

AD2Checker uses a script to drive Monkey [1], which is 
a command-line tool developed by Google that can be run in 
an emulator or on an actual device sending a pseudo-random 
user event stream to the system, to automatically run the 
instrumented APK on the Android device.

Log information is collected for error pattern matching.
We have collected enough information to distinguish 
different object instances and different execution paths to 
ensure the accuracy of matching. Our method detects 145
bugs on 19 apps in F-Droid [2]. Although it is less than 
AsyncChecker (215), they are real defects and will not cause 
additional judgment work for developers. On the other hand, 
our experiments also triggered crashes caused by AsyncTask 
misuses, which are the primary concern of app developers 
and static analysis cannot achieve this effect.

In summary, we make the following contributions in this 
paper.

1. Methodology: We propose a dynamic detection 
method based on instrumentation and log analysis to 
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check AsyncTask-related defects. And then, we 
check defects in logs according to the detection rules. 

2. Tool: We develop a tool named AD2Checker based 
on the proposed detection method. 

3. Evaluation: We verify AD2Checker’s effectiveness 
in 19 real-world apps. The experiment shows that 
AD2Checker provides more detailed and readable 
reports without false positives and triggers some 
crashes caused by AsyncTask misuse.

II. BACKGROUND

A. Dynamic Detection
Dynamic analysis technology generally uses the 

dynamic execution information of the program for analysis. 
This kind of technology does not require the source code of 
the program, but it needs to run the program in advance and 
collect the execution sequence, and then analyze it. We can 
use dynamic analysis techniques to detect the security, 
energy and performance of Android applications [27, 28, 
29]. Our work instruments the applications to collect logs 
and analyzes the defects of AsyncTask according to the 
detection rules [5]. Instrumentation [25, 26] and Log 
analysis [12, 13, 14, 15, 16] are common in dynamic 
analysis technology. Program instrumentation is inserting
specific probe code in a location of the program and 
maintaining the integrity of the source program. The probe 
code usually dynamically monitors the program and records 
runtime data, including path coverage information, function 
call information and so on. Log analysis is extracting the 
characteristic information of the program by mining logs. 
The information includes user request flow, timing 
information, etc.

B. AsyncTask and Its Misuse
Due to the simplicity of use, AsyncTask [22] accounts 

for the majority of the six Android asynchronous classes. 
AsyncTask provides five callback functions to ease 
asynchronous programming, including onPreExecute(),
doInBackground(), publishProgress(), onProgressUpdate()
and onPostExecute(). The doInBackground() function is 
used to run time-consuming tasks, so it works in the 
asynchronous thread. The remaining 4 callback functions all 
work in the UI thread; onPreExecute() is used to do some 
preparation before starting the asynchronous thread; 
publishProgress() and onProgressUpdate() are used to 
update the progress of the asynchronous thread in real time; 
onPostExecute() is used to return the results of 
asynchronous thread to the UI thread. Once an 
asynchronous thread is started, the callback functions will 
be invoked in order by Android System. However, the 
running of AsyncTask’s time-consuming tasks will be 
affected by user events (i.e., rotate the screen, click the back 
button, etc.), so developers should pay attention to these 
issues when programming.

AsyncChecker [5] has summarized 5 defects caused by 
the misuse of AsyncTask, as Table I shows. 
StrongReference means that if the AsyncTask is declared as 
a non-static internal class of the Activity, the object of 
AsyncTask will hold a strong reference to the object of 
Activity through the GUI component. Once the Activity is 
destroyed, the memory occupied by the object cannot be 
released, which will cause memory leak. NotCancel means 
that if the Activity is destroyed while the AsyncTask is still 
running without invoking cancel(), the AsyncTask cannot 
return the result to the GUI component of Activity, which 
will cause the program to crash. The above two defects are 
all caused by the incorrect handling of the interaction 
between AsyncTask and its external call components (e.g., 
Activity). NotTerminate means that if the cancel() is 
invoked and the isCanceled() is not invoked in the loop 
body of the asynchronous thread, the asynchronous thread 
will not be terminated in time and the energy waste will 
occur. EarlyCancel means that the asynchronous thread is 
terminated before being started, which will cause wrong 
state. The above two defects are all caused by the incorrect 
way to terminate the asynchronous threads. RepeatStart
means that the same instance object of AsyncTask cannot be 
executed repeatedly, otherwise, an exception will be thrown. 

For the convenience of description, we give 
BugPatterns abbreviation mapping, and most of the 
abbreviations will be used in the subsequence. This 
mapping is also shown in Table I.

TABLE I. BUG PATTERN AND ITS ABBREVIATION  

BugPattern Abbreviation 
StrongReference SR

NotCancel NC
NotTerminate NT
EarlyCacncel EC
RepeatStart RS

C. Motivating Example
As shown in Figure 1, when a file does not exist, the 

file is created and the AsyncTask operation is performed. 
When onResume() is called multiple times, the file will be
created at most once. At this time, the execute() method of 
asyncTask will not be called repeatedly, the RS error does 
not exist at this time. However, AsyncChecker cannot detect 
the status change after the file is created, and mistakenly 
believes that the if-module in onResume() will be called 
repeatedly together, resulting in a false positive to the RS.

If we dynamically track related calls of asyncTask, the 
execute() will not be executed repeatedly, thereby avoiding 
false positives.
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Figure 2. Overview of the Detection Approach

public class MyActivity extends Activity{
     

private AsyncTask asyncTask = null;
private File file = null;
…

    protected void onResume(){
    {
          If (!file.exist()){

file.createNewFile();
asyncTask.execute();

}
}
…

}
Figure 1. Motivating Example 

III. METHODOLOGY

In this part, we will introduce our method. First, an
overview of our approach is introduced. Next, each module 
will be described in detail.

A. Overview
Figure 2 shows an overview of our approach and we 

implement a tool named AD2Checker based on the 
approach. 

The basic work-flow of this approach is detecting 
AsyncTask related defects based on log analysis. Given 
Android APK and misuse patterns, AD2Checker first 
performs instrumentation based on the information we need, 
mainly including log output statements. The instrumented 
code is written back to the APK, which will be re-signed so 
that it can run correctly on the Android device. Then, 
AD2Checker configures automated testing tool (such as 
Monkey [1]) to drive the operation of this APK, the 
generated logs are collected by Logcat. Next, AD2Checker 

processes the collected logs to generate paths and labels. In 
this step, we first dynamically generate paths to the target 
functions according to the ExecutionStack; and then, we 
extract the hash value of Activity to generate the label of 
each log sequence. Finally, the log sequence is grouped
according to the label and matched automatically to report 
the bug results.

B. Instrumentation
For those AsyncTask operations, log print statements

are needed to be inserted into corresponding positions to 
collect program execution information and we implemented 
an instrumentation module to automatically insert them. Our 
hypothesis is the same as the traditional dynamic test, 
believing that the inserted log information will not cause
additional impact on the bug.

Table II describes the inserted log information and 
location point, as well as the bug patterns served. The entry 
and exit of all methods are inserted into the log statement, 
used to identify that a method is called and exited. The 
reason for adding the exit identifier is to distinguish whether 
the method call sequence is nested call or sequential 
execution, such as ABC or A(B(C)). The signature of a 
method represents its unique identifier. In Java, the 
signature of a method is mainly composed of the full class 
name, method name, parameter type list, and return value 
type. All types include package names if they are reference 
types.

The hashCode() method is easy to understand in Java. 
It represents the hash value of an object instance, which is 
usually the only one that is not easy to collide. When 
instrumenting, the hashCode() method of the Object class 
can be directly called by an instance of any reference type, 
because all reference types inherit from the Object class. 
Developers usually do not deliberately rewrite this method. It
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is easy to know that whether the hashCode() method has 
been rewritten by scanning the specific class, we only need 
to uniquely identify the instantiated object, so calling the 
default hashCode() is enough. Here, we pay more attention 
to the hash value of Activity and AsyncTask instance objects. 
Some of the life cycle methods of the former represent the 
entry of the program because Android does not have a direct 
main() entry, and the latter represents the object we are 
concerned about. The sequence begins with the Activity 
lifecycle methods and ends with operations of the 
AsyncTask object, which represents the execution path of the 
program.

public class MyActivity extends Activity{
     …

+     public void onDestroy(){
+    {
+           super. onDestroy();
+    }

…
}

Figure 3. Example of Adding onDestroy() Method

The onDestroy() method represents that the Activity is 
destroyed. This is part of the information we collect to 
determine whether the AsyncTask object has a strong 
reference or the cancel() method is executed before the 
activity is destroyed. Some Activity classes do not rewrite 
onDestroy(), which will affect our instrumentation and 
judgment. Therefore, we need to check all Activity classes. 
If a class does not override the onDestroy() method of the 
class, we need to insert one and implement its body 
containing the call to the parent class onDestroy() to make 
the Activity life cycle complete. As shown in Figure 3, 
super.onDestroy() is invoked.

public class MyActivity extends Activity{
     …

    public type methodName(){
    {
           //…
            asyncTask = …;

+              StringBuider sb = new StringBuider();
+              StackTraceElement[] trace = Thread

.currentThread().getStackTrace();
+             for (StackTraceElement e : trace){
+                 sb.append(e.getClassName());
+                 sb.append(e.getMethodName());
+                 sb.append(“_”);
+             }
+             sb.append(asyncTask.hashCode()+“/execute”);
+             Log.i(“execute”, sb.toString());
               asyncTask.execute(); // an AsyncTask Operation

}
…

}
Figure 4. Example of Adding ExecutionStack

ExecutionStack represents the stack information of 
program execution. It is a stack sequence of method 
execution. The bottom of the stack represents the entry 
method and the top of the stack represents the currently 

executed method. Each stack element in the stack contains 
the signature information of the method. Java provides the 
corresponding API to obtain this information. What we have 
to do is to traverse the stack and concatenate the method 
names to quickly locate a certain operation of the 
AsyncTask object. We use StringBuilder as a buffer 
container and finally convert it to a string for printing, as 
shown in Figure 4.

Separators, such as '#' and '_', will be added between 
different messages to facilitate log analysis and string 
segmentation for matching.

C. Execution
Monkey will be used to run the APK after 

instrumentation. It is a command-line tool used to randomly 
send time series to the device. It is very simple to use, but 
we have done extra work to make it more effective for our 
work.

We first use batch scripts instead of direct command 
lines to automatically combine with re-signing and 
renaming and Logcat log collecting instead of manually 
modifying the scripts every time, which can save a lot of 
time and is not easy to make mistakes. Secondly, the static
analysis helped us get a list of activities that contain 
AsyncTask operations. Logcat will export the generated log 
information instrumented before from the device. When 
instrumenting, we use the android.util.Log related output 
method in the Android SDK instead of the common 
System.out or System.err in Java as print statement. Two 
parameters (TAG and Information) are provided in it and 
the former can directly distill the information we have 
inserted, so as to provide purer AsyncTask-related execution 
information for log analysis. In order to collect crash 
information, we sometimes need to extract the whole log in 
the target application containing the crash execution stack 
information, which is captured and output by the Android 
system.

When sending a sequence, these activities can be 
directly started and those without AsyncTask operations
will not be started.

D. Log Analysis
Logcat collects all the information we instrumented.

Then the logs are grouped by the hash value of the 
AsyncTask object, and the hash value of the same value is 
grouped into one. Thus, we get a sequence of AsyncTask 
operations with execution path information. This sequence 
contains the activity life cycle method information of the 
entry, and the corresponding onDestroy() method log 
information is obtained according to the Activity hash value. 
Then add the onDestroy() log information to the AsyncTask 
execution sequence ordered by timestamp. Next, we define 
a Bit Vector Container and standard error template vector 
for each misuse pattern to match. A Bit Vector Container is 
a vector of several dimensions, and each dimension 
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TABLE II. POSITION AND CONTENT OF INSTRUMENTATION 

TABLE III. BUG PATTERN AND ITS BIT VECTOR

Bug
Pattern

Vector Container Error 
Template

Vector1st Dimension 2nd Dimension 3rd Dimension 4th Dimension

SR Assign Context 
to Field Invoke

execute() 
Invoke

onDestroy()
Entry / <1,1,1>

NC execute() 
Invoke

cancel() 
Invoke

onDestroy()
Entry

onPostExecute()
Exit <1,0,1,1>

NT execute() 
Invoke

isCanceled()
Invoke

doInBackground()
Exit

/ <1,0,1>

EC cancel() 
Invoke

execute() 
Invoke

/ / <1,1>

RS execute() 
Invoke

execute() 
Invoke

/ / <1,1>

represents a key AsyncTask operation or onDestroy() log 
information. The Bit Vector Container has an initial state 
with 0 in every bit. Traverse each AsyncTask operation 
sequence sequentially and like a sliding window, and the 
corresponding key operation bit will be assigned 1 if it 
appears, and the previous position bit will stay as 0 if the 
previous bit does not appear when the next dimension 
appears. The entire Vector Container starts with the first-
dimensional matching and ends with the last-dimensional 
matching. If the last dimension does not appear when 
reaching the end of the sequence, set all the previously 
undecided parts to 0. The standard matching template vector 
for each misuse pattern represents the misuse pattern. The 
obtained vector container is XORed with the standard 
template, and 0 means that it matches the error pattern.

Table III shows the dimensions of the vector container 
corresponding to each pattern and the standard error 

template. EC and RS have two dimensions, SR and NT have
three dimensions, and NC has four dimensions. Symbol /’ 
means there is no dimension. The 0 in the standard error 
template represents no occurrence and 1 represents 
occurrence. Figure 5 is an example of NC error template 
matching. The vector container has four dimensions. In the 
Dimension layer of Figure 5, the first dimension is the 
execute() invoke point, the second dimension is the cancel()
invoke point, the third dimension is the onDestroy() Entry,
and the fourth dimension is the onPostExecute(). The error 
standard template of NC is <1,0,1,1>, which means it is a 
sequence that includes the execute(), does not include the 
cancel(), and ends with the onDestroy() and the 
onPostExecute(). If the vector container is XORed with 
<1,0,1,1>, the result is 0, which means NC appears. The
principle of other error pattern matching is the same way.

Position Content Inserted Bug Pattern
Method Entry & Exit this.hashcode + MethodSignature + "out"/"in" All

AsyncTask 
Operation

execute() Invoke Point this.Hashcode+
ExecutionStack+
async.hashCode+ 
StringOf(InvokeStmt)

All

cancel() Invoke Point NC/NT/EC

isCanceled() Invoke Point NT

Reference Assign Point
in AsyncTask Constructor this.hashcode + StringOf(AssignStmt) SR

onPostExecute() Entry this.hashcode + MethodSignature + "onPostExecute" NC
onProgressUpdate() Entry this.hashcode + MethodSignature + "onProgressUpdate" NC
doInBackground() Entry this.hashcode + MethodSignature + "doInBackground" NT/NC

Activity  class onDestroy() method and its implementation SR/NC
onDestroy() in Activity  class this.hashcode + MethodSignature + "onDestroy" SR/NC
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Figure 5. Vector Container Example in NC
1AOS is AsyncTask Operation Sequence.

IV. IMPLEMENTATION

We have implemented the AsyncTask misuse detection
approach mentioned above into a tool called AD2Checker. 
It is written by Java based on the Soot [3] framework and 
Jimple intermediate representation. As Figure 2 shows, there 
are four modules in AD2Checker, including Information 
Collection Module, Test Module, Log Processing Module 
and Defects Detection Module. 

Information Collection Module inserts extra 
instructions into APK and writes the instrumented code 
back into APK. Test Module is based on the Monkey [1]
tool; it implements some scripts to resign and rename the 
APK to a new one and drive Monkey to run for distilling log 
information. Log Processing Module first extracts 
AsyncTask related information and path information in logs,
and then the logs with the same hash value of the 
AsyncTask will be grouped into one. Thus, we get a 
sequence of AsyncTask operations with execution path 
information. Defects Detection Module matches bug 
patterns in the extracted sequences. Each path information 
will be matched by each bug pattern to see if the match is 
successful. Once the match is successful, a bug will be 
recorded, along with its path information. AsyncTask 
objects with the same path and the same hash value will be 
merged to reduce duplication.

V. EVALUATION

We apply AD2Checker on 19 real-world apps to show 
its effectiveness. Some instrumentation statistics are 
provided as supplementary explanations. Finally, we 
compare AD2Checker with existing tools AsyncChecker [5]
and the result shows that our tool has a higher precision
without false positives.

A. Benchmark and Experimental Setup
We collected 19 real-world applications mentioned in 

AsyncChecker to compare with it. The applications in the 

benchmark include music player applications, picture 
processing applications and game applications, etc., and the 
scale of applications are evenly distributed, which can 
illustrate the representativeness of the benchmark. Table IV
lists the detailed information of these experimental instances. 

The first column of Table IV denotes the name of apps. 
The following four columns show the numbers of its classes 
(#C), Activities (#AC), AsyncTasks (#AS), and methods 
(#M). The numbers of classes and methods illustrate the 
sizes of apps. The numbers of Activities and AsyncTasks 
show the attributes related to AsyncTask. The experiments 
have been performed on a mobile smartphone with 1.82GHz 
CPU and 3GB RAM.

TABLE IV. EXPERIMENTAL INSTANCES

App Name #C #AC #AS #M

taskbar 1341 21 3 9398
Jamendo 224 13 7 1146

osrshelper 639 9 4 4725
fixme 45 4 6 233

reddinator 2651 36 29 22224
gallery 2161 16 9 14830

syncthingandroid 5002 28 7 36433
commander 1047 13 6 7890

Upm 190 14 10 994
mileage 419 37 5 2620

anki 3259 38 11 25023
d00r 3062 5 6 19889

richapp 1636 14 4 12898
library 1507 9 7 12012

encapsulation 2099 9 4 17086
blinkenlights 247 13 2 1654
easy_xkcd 1192 3 2 8970

Kiss 5710 24 8 43677
wikipedia 4585 31 12 31745

We set the number of input events for each application 
to 200,000 for Monkey. In order to ensure the normal 
execution of the application and prevent the execution path 
from being truncated, we add the parameter "-ignore 
crashes" when matching rules bug delete it when crash 
collecting. At the same time, in order to meet the 
environmental conditions of asynchronous work, we sang 
the time interval for sending the next event. The average test 
time required for each application is about 20 minutes.

Monkey's decision time for each input operation is short, 
and its random test method can cover most of the accessible 
codes. We calculated the coverage rate of Monkey in 19
real-world applications. It can reach a coverage rate of 0.419 
for Activity components and 0.505 for AsyncTask 
components. For the login page that needs personal 
information, we enter the legal information in advance so 
that the following pages behind the login page can be 
triggered.

To evaluate the effectiveness of our approach, we raise
several research questions as follows.

• RQ1. How accurate is our work in the 
instrumenting module? 
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• RQ2. How effective is AD2Checker on real-world 
apps?

• RQ3. How accurate is AD2Checker compared with 
the existing tools?

B. RQ1- Accuracy of the Instrumenting Module
In this subsection, we will discuss how the 

instrumentation improves the accuracy of the collected 
information and impact the size of applications and 
instrumentation times. 

We have done the following improvements in 
instrumentation. We found that (1) The onDestroy() method
is not overridden in some Activities of the application; (2)
there are no return statements in some functions; since our 
dynamic method requires these two types of information.
These two problems will affect the accuracy of collected 
information. Therefore, we checked these two types of 
defects and inserted them in correct positions to improve the 
accuracy of information collection.

We have collected instrumentation information on 19
apps as Table V shows. The first column denotes the names 
of apps. The second column denotes the time of 
instrumentation. The last two columns denote the number of 
Activities that have not overridden onDestroy() functions 
and the number of functions without return statements.

As it can be seen, there are 280 Activities without 
onDestroy() method in 19 applications from 337 Activities
totally, each application has 15 Activities on average; and 
there are 7 methods in 19 applications, which do not have 
return statements. We added the onDestroy() method to 
83%(280/337) of Activities. 

By instrumenting the detailed information, we improve 
the accuracy of collected logs about program execution. We 
analyzed the increment of application size and time of 
instrumentation. The average instrumenting time on 19
applications is 38s. This is an acceptable overhead.

TABLE V. INFORMATION OF INSTRUMENTATION

App Name Time(s) #Without
onDestroy()

#Without
return Stmt

taskbar 54 15 0
jamendo 15 13 0

osrshelper 32 8 0
fixme 20 3 0

reddinator 14 32 2
gallery 52 13 0

syncthing 46 21 1
commander 16 10 0

Upm 21 14 0
mileage 34 37 0

anki 53 28 1
d00r 23 4 0

richapp 34 12 1
library 27 7 0

encapsulation 16 7 0
blinkenlights 52 10 0
easy_xkcd 42 1 1

Kiss 10 22 1
wikipedia 61 23 0

C. RQ2- Effectiveness of AD2Checker
Table VI shows the detection results of AD2Checker. 

The first column denotes the names of apps. Column #SR
and #NC denote how many StrongReference defects and 
NotCancel defects that are checked by AD2Checker 
respectively. Similarly, the columns #NT and #EC denote 
how many NotTerminate defects and EarlyCancel defects
that are checked by AD2Checker respectively. The last 
column total denotes how many AsyncTask-related defects 
are detected in the app. RepeatStart defects did not appear in 
our experiment. 

In this part, we discuss the effectiveness of AD2Checker
in detecting AsyncTask-related defects. We apply 
AD2Checker on 19 real-world apps to verify the ability on 
detecting AsyncTask-related defects. The result shows that 
AD2Checker can detect 145 defects on 19 real-world apps. 

As we can see in Table VI, the total number of defects
detected by AD2Checker in 19 applications is 145, and each 
application has 8 defects on average. It can be seen that these 
AsyncTask-related defects are common in real-world 
applications. Among them, Jamendo App has 15 defects, 
which has the largest number of defects in 19 apps. The 
reason is that it is an image upload tool that contains many 
asynchronous components.

TABLE VI. RESULTS OF AD2CHECKER ON REAL-WORLD APPS

App Name Misuse Pattern Total#SR #NC #NT #EC
taskbar 1 2 2 0 5

jamendo 5 5 5 1 16
osrshelper 4 3 4 0 11

fixme 2 1 4 0 7
reddinator 2 3 6 0 11

gallery 0 2 5 0 7
syncthingandroid 1 3 3 0 7

commander 2 1 2 0 5
Upm 3 3 7 0 13

mileage 2 1 1 0 4
anki 0 0 9 0 9
d00r 2 5 5 0 12

richapp 1 1 1 0 3
library 1 1 1 1 4

encapsulation 1 0 1 0 2
blinkenlights 1 1 1 0 3
easy_xkcd 2 1 9 0 12

Kiss 1 3 3 0 7
wikipedia 3 2 4 0 9

Total 34 38 73 0 145

Furthermore, SR, NC and NT are the most common in 
the defects, and EC and RS are rare due to the Execute-
related defects that the later one will cause the program to 
crash. This is similar to the distribution trend of results
mentioned in AsyncChecker. Therefore, to test the 
effectiveness of the tool for these two patterns, we manually 
injected 15 defects in 5 open-source applications to verify 
the accuracy of AD2Checker. The results are shown in Table
VII. The column #EC and #RS under the column Execute-
related denote how many RepeatStart defects and 
EarlyCancel defects that are checked by AD2Checker.
AD2Checker reports 13 defects of 15 and there are 2 defects
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have not been reported. The reason for the false negatives is
that the related asynchronous components have not been 
executed, which means the path is difficult to be executed 
under Monkey. The recall rate is 86%, and there is no false
positive.

TABLE VII. MANUAL INJECTION OF EXECUTE-RELATED DEFECTS

#EC #RS
TP 5 8
FP - -
FN 1 1

If RepeatStart appears, the app will crash. This error will 
only appear in the code that has never been run or even 
before release. App after smoking test will be able to avoid 
this error and therefore, this kind of error will not occur in 
real applications. So far, whether RepeatStart is a useful 
pattern of misuse in practice may be discussed again.

TABLE VIII. CRASH LOGS

App 
Name

Crash Logs

jamendo java.lang.IllegalArgumentException: 
View=DecorView@b1cf153[] not attached 

to window manager
syncthing-

android
java.lang.IllegalArgumentException: 

View=DecorView@69d73d8[] not attached 
to window manager

d00r java.lang.IllegalArgumentException: 
View=DecorView@ece2468[] not attached 

to window manager
d00r android.view.WindowManager

$BadTokenException: 
Unable to add window -- token 

android.os.BinderProxy@8a5f58e is not valid; 
is your activity running?

Some of the defects we detected can cause real-world 
apps to crash, which means developers should take these as 
serious problems. The partial crash logs are listed in Table 
VIII. We manually analyzed the complete stack information 
of Crash and confirmed that it was caused by the misuse of 
AsyncTask. In fact, the first three lines are the most common 
crashes caused by AsyncTask. DecorView is the root view of 
the Activity. When the Activity is destroyed but the 
AsyncTask is not terminated or canceled immediately, the UI 
of the Activity has been destroyed also when the UI tries to 
update UI after the execution then crash occurs. This is a 
typical crash caused by NotCancel or NotTerminate.

D. RQ3-Comparison with Existing Tool
In this section, we will compare our tool with existing 

tool. To the best of our knowledge, there is no dynamic-
based analysis tool for detecting AsyncTask related defects.
AsyncChecker checks defects of AsyncTask based on static 
analysis technology and it has already been compared with 
related work in the article, which obtains considerable 
experimental results. Therefore, we compared our tool

AD2Checker with AsyncChecker on these 19 applications,
and will not compare with other tools. 

We compared the detection types, the precision of 
reports, the number of repeats, false positives and false 
negatives between the two tools. The results are shown in 
Table IX.

TABLE IX. COMPARED RESULTS OF ASYNCCHECKER

FP FN TP Total
AsyncChecker 7 33 215 336
AD2Checker 0 103 145 145

In Table IX, we manually compared the results of the 
two tools, and we counted the defects that AD2Checker 
could detect but AsyncChecker could not as 
AsyncChecker's false negatives and vice versa. In fact, 
AD2Checker's results are all reachable. We consider each 
defect as AD2Checker's false negative when it is detected 
by AsyncChecker but it is difficult to judge whether it is 
reachable. So we get the lower bound of the recall rate is 
58.5% (145/(103+145)) and the precision rate is 100% as 
without false positives and the corresponding F1 value is 
0.74. Although the F1 value of AsyncChecker may be higher, 
developers need to spend a lot of extra time to determine 
whether it is a false positive in a complex path, and high 
false positives are often the reason why developers abandon 
detection tools. Our AD2Checker provides a considerable F1
value without false positives, which is its contribution.
Another contribution of AD2Checker is to provide more 
details and execution information, which is more readable, 
as shown in Figure 6.

[Type]     
NotCancel;

[Apkname]     
mileage;

[Classname]      
com.evancharlton.mileage.Activity/com.evancharlton

.mileage.Task;
[Stmt]     

AsyncTask/execute: virtualinvoke r1.<com.evancharlton
.mileage. Task: android.os.AsyncTask execute ()>(r3);

[Time]     
15:23:01 - 15:26:33;

[Path]
     root: onResume()  com.evancharlton.mileage.Activity; 
     node1: onClick() android.view.OnClickListener;
     node2: ……
     target node: execute() com.evancharlton.mileage.Task;

Figure 6. The Report of AD2Checker

Because the coverage of dynamic testing cannot reach 
100%, some Activity and AsyncTask components cannot be 
executed. Therefore, AD2Checker has some false negatives 
compared to static analysis tool AsyncChecker.

VI. THREAT TO VALIDITY

There are two major threats to the validity of the studies. 
The first one lies in the experimental benchmark. We 

choose apps with one DEX file from the real-world as the 
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benchmark. Since our instrumentation work is based on the 
Soot framework [3], Soot cannot repackage apps with 
multiple DEX files at version 2.3.3. The above problems 
lead to the failure of instrumentation for multi-DEX apps. 
However, the scale of our benchmark is an average of 2283 
classes for each app, which is close to multi-DEX apps. The 
latest Soot version is not very stable for multi-DEX
instrumentation. In the future, we will use the latest Soot 
version to do more experiments on multi-DEX apps.

The second one lies in the callback function set we 
construct. Android does not provide a detailed list of 
callback functions, and users can customize the callback 
function according to their needs. Therefore, we have 
summarized 18 common callback functions according to 
Android Developer Documentation [30] and we used a set 
to record them. There are also some callback functions used
infrequently and we have not summarized them. Users can 
add callback functions they want to consider to the set as 
needed, which is easy to implement.

VII. RELATED WORK

We summarize previous works in Android asynchronous 
classes, and existing log analysis techniques. 

Research on Android Asynchronous Class.
APEChecker [4] proposes three rules for async programming 
to reduce errors caused by misuse of asynchronous 
components but it is not open source. Yu Lin et al. [7] 
reconstructs AsyncTask into another asynchronous class 
IntentService. Tang et al. [8] propose a method to generate
test cases triggering concurrency errors and the same 
problem is detected by defining the happens-before 
relationship model [9]. Since Amandroid's analysis directly 
handles inter-component control and data flows, [10] can be 
used as a framework to address security problems that result 
from interactions among multiple components from either 
the same or different apps and Portend [11], a tool that not 
only detects data race but also automatically classifies them 
based on their potential consequences. Kang et al. [20] 
researched the impact of background thread scheduling on 
the response time of user events in Android asynchronous 
programming and Bouajjani et al. [21] used formal 
verification method to verify the robustness of concurrent 
operations (i.e., event conflicts and data competitions). The 
above works consider the performance and robustness of 
Android asynchronous programming respectively, while they 
all analyze the problem at thread-level and do not consider 
the problem introduced by characteristics of AsyncTask.
Existing approaches do not pay more attention to the defects 
caused by the AsyncTask asynchronous components
dynamically.

Log-based analysis. There have been a lot of studies [12,
13, 14, 15, 16, 17, 18, 19] on fault detection based on the 
correlation analysis between logs and the running status of
thread or program or server node. Log-related works include 
log collection, log parsing, log grouping, log detection and 
etc. Many researchers process logs to extract various 
information, including event flow, timing information, etc. 
Xu et al. [23] mines console logs and applies machine 

learning techniques to detect anomaly executions. Iprof [24]
extracts request ID and timing information from logs to 
profile request latency and [23] also detects large-scale 
system problems by mining console logs. These dynamic 
detection methods have not been used in the detection of 
AsyncTask related defects.

VIII. CONCLUSION

In this paper, we propose a dynamic detection method 
based on instrumentation and log analysis to check 
AsyncTask-related defects. We have collected a wealth of 
log printing information to distinguish asynchronous logs. 
And then, we check defects in logs according to match rules.

To evaluate AD2Checker, we use 19 real-world apps 
from F-Droid. AD2Checker successfully checks 145 defects. 
We compare AD2Checker with an existing tool 
AsyncChecker which is based on static analysis and the 
result shows that AD2Checker has higher precision and 
provides more detailed and readable reports without false 
positives.
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