
An Empirical Study: mems as a Static Performance Metric

Liwei Zhang1,2,3, Baoquan Cui2,3, Xutong Ma4, Jian Zhang1,2,3,∗
1Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China

2Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences (CAS), Beijing, China

3University of Chinese Academy of Sciences (UCAS), Beijing, China
4Inria, Paris, France

{zhanglw, cuibq, zj}@ios.ac.cn, xutong.ma@inria.fr
*Corresponding author

Abstract—Performance analysis is essential to ensure the
non-functional performance requirements of a software sys-
tem. However, existing runtime-based approaches suffer from
the issues of efficiency and platform dependency. In this
paper, we investigate the effectiveness of using the mems
value to statically estimate the program performance. The
mems value, originally proposed by Donald Knuth, is a static
and architecture-independent metric used to measure memory
access, to estimate program performance statically. We devel-
oped an instrumentation tool to record the control flow and
measure the mems value by rewriting the source code. Exper-
imental results across ten classical algorithm programs show
that execution paths of a program with larger mems values
consistently exhibit lower efficiency. Whereas the correlation
weakens among different programs. This indicates that the
mems maric is best suited for comparing the performance of
various paths in the same program.

Keywords–Static Analysis; Program Performance; Memory
Accesses; Performance Metrics

1. INTRODUCTION

An important aspect of software quality is performance.
Program efficiency is typically characterized by complexity
measures such as worst-case or average-case time complexity.
However, for real-world programs, even domain experts can
find it difficult to accurately predict performance. For example,
although the Boyer–Moore string matching algorithm was
introduced in 1977 [2], its exact complexity was not rigorously
established until more than a decade later [3]. Moreover,
theoretical complexity often fails to reflect actual program per-
formance, as it abstracts away constant factors, low-level im-
plementation details, and hardware-specific effects. Therefore,
measuring performance through empirical evaluation remains
necessary for understanding real-world program behavior.

However, empirical performance evaluation often suffers
from limited path coverage, platform dependence, and high
measurement cost. These limitations hinder the ability to detect
performance regressions and ensure consistent behavior, which
are essential aspects of software quality assurance.

To address the gap between theoretical models and prac-
tical behavior, researchers have explored static and symbolic
analysis methods. A notable example is Zhang’s framework

for performance estimation using symbolic data [1], which
uses symbolic execution and volume computation [20, 21]
to estimate performance without running the program. The
key idea is to represent execution conditions symbolically
and compute the volume of input space satisfying each path,
enabling quantitative analysis of potential overheads.

Although prior work has explored symbolic and static
techniques for program analysis, practical methods for static
performance estimation remain underdeveloped. Empirical ap-
proaches, while accurate, require repeated execution on target
hardware and are difficult to scale across environments. Sym-
bolic execution tools struggle with scalability and automation,
particularly for real-world C programs. Most existing static
performance metrics—such as operation counts, loop nesting
depth, or control-flow complexity—lack empirical validation
and have limited ability to explain performance differences
between execution paths. In particular, the mems metric,
originally proposed by Knuth [6] to measure memory access
operations, has seen little empirical study or integration into
automated static analysis workflows. As a result, developers
currently lack lightweight, architecture-independent metrics
that can reliably predict path-level performance behavior.

Traditional performance profiling relies on repeated pro-
gram executions with various inputs to gather timing statis-
tics [17–19]. While these techniques are valuable, they may
miss rare or worst-case paths and often require signifi-
cant computational effort. Automated testing frameworks like
XSTRESSOR [17] and hybrid tools like those from Bundala
and Seshia [18] improve test input quality but still strug-
gle with scalability and low-level performance modeling. To
improve generalizability and efficiency, symbolic benchmark-
ing [1] emerged—leveraging symbolic execution to explore
multiple paths in a single analysis and estimate performance
using metrics such as comparison count or memory accesses.

We adopt the memory access count—abbreviated as
mems—as a machine-independent performance metric.
Originally proposed by Knuth [6], mems represents the
number of memory read/write operations in a program
and offers a portable estimate of performance. Unlike raw
execution time, which is affected by CPU and system
environment, mems is a symbolic metric that reflects a
program’s inherent memory behavior.

Extending this idea, we design a path-sensitive static analy-

sis that uses symbolic execution to compute memory accesses
for each feasible control-flow path. By applying model count-
ing techniques [20, 21], we compute the expected performance
as a weighted average over path-level mems. This method
enables early-stage and architecture-neutral performance rea-
soning without requiring actual execution.

Although mems has been discussed in theoretical con-
texts [1, 6], its practical applicability in real-world software
analysis remains unexplored. Several technical challenges
must be addressed to realize its potential. First, memory access
patterns in C programs are often implicit and context-sensitive,
making it difficult to statically and precisely extract mems
without full semantic understanding. Second, the relationship
between static memory access counts and dynamic perfor-
mance is nontrivial: it may vary across paths, compilers, and
hardware configurations, raising questions about when and
where mems is a valid predictor. Third, applying such analysis
to large codebases involves scaling across thousands of exe-
cution paths while preserving both soundness and efficiency.
These challenges underscore the need for systematic tools and
empirical validation to assess mems as a practical performance
metric.

To address these challenges, we propose and implement the
following:
• New Metric. We adopt mems, originally proposed by

Knuth, as a lightweight and architecture-independent perfor-
mance metric based on static memory access counts, with
a particular focus on array operations as key contributors to
execution cost.

• Automated Solution. We develop an automated pipeline for
mems analysis based on the eppather tool [22], derived
from the epat test generation framework [25, 26]. Our tool
integrates AST-based analysis, path traversal, and source-to-
source instrumentation to collect mems and timing data.

• Evaluation. We empirically evaluate whether mems corre-
lates with execution time at two levels: (1) across different
paths in the same program (RQ1), and (2) across programs
and platforms (RQ2). Results show that mems reliably
predicts intra-program performance, but its cross-program
accuracy varies.
The findings of this empirical research contribute directly

to improving the accuracy and reliability of static performance
indicators used in symbolic benchmarking. By clarifying the
strength and limitations of mems as a performance predictor,
this study does not only enhance the understanding of program
complexity, but also provides practical guidance for more
effective performance evaluation, optimization strategies, and
software testing practices.

2. PRELIMINARY

Static program analysis plays a vital role in program un-
derstanding, optimization, and verification. One commonly
used representation is the control flow graph (CFG), where
nodes represent statements or basic blocks, and edges represent
possible control flow between them. Many static analysis tech-
niques, such as abstract interpretation and symbolic execution,

operate on CFGs to detect bugs, verify properties, or estimate
performance.

2.1 The mems Metric

Usually we evaluate a program’s performance by executing
it on a computer with input data, and measure its duration
of execution. This can be done repeatedly with different input
data. As abstracted as modeled with indicated in Moore’s Law,
the improvement in computer devices leads to an increment in
the efficiency of program execution as time passes. For many
years, computers have been getting faster and faster. Thus a
program’s running times (in seconds) are getting less and less.

Knuth came up with an idea to measure a program’s per-
formance, which is independent of the processor’s computing
power. He proposed to use the number of memory accesses
(in short, mems) [6] to indicate the execution speed of a
program.Knuth has evaluated various SAT solvers using the
mems metric [27]. We simply introduce a special variable –
mems, which is initialized to 0 and incremented every time a
memory access (such as an array read or write) occurs during
the execution. In a statement which involves memory access,
we add a statement to increase the value of mems. Knuth often
uses the notation o to increase the value by 1, oo to increase
the value by 2, and so on. Thus we may have statements like
the following, to compute the value of mems.

o, arr[i] = i+2;
oo, arr[i+1] = arr[i];

The mems has not been used widely. In the subsequent
sections of this paper, we will conduct a series of experiments
to check whether this indicator is feasible.

2.2 Path-Based Performance Estimation

A widely adopted method in static analysis is path-sensitive
analysis, where a program is analyzed along individual exe-
cution paths extracted from the CFG (Control Flow Graph
). Each path begins at the program’s entry and ends at an
exit point. Analyzing individual paths allows for fine-grained
understanding of the program’s behavior.

However, due to the condition checks in a program, not all
topographically valid paths extracted from a CFG are feasible.
A path is considered feasible only if its path constrints (aka.
path conditions), the conjunction of all its conditional clauses
over the program inputs, are satisfiable. To determine the
feasibility, we can first use the symbolic execution approach
to extract the path constraints for a given path, and then check
the satisfiability [10, 11, 20] with SMT solvers or compute the
path frequency, the number of input assignments satisfying the
path constraints, with model counters.

To estimate performance in a machine-independent manner,
we define Performance Indicators (PINDs), such as the num-
ber of memory accesses, arithmetic operations, or comparisons
on a given path. Let a program consist of a set of paths {Pi}.
Each path Pi has [9]:
• A frequency δi — how often the path is executed (based

on the number of satisfying inputs).

2

• A PIND value pindi — the cost incurred along the path
(e.g., number of memory operations).

The estimated performance of the entire program is then
computed as the weighted average:

Performance =

∑
i(δi ∗ pindi)∑

i δi

This technique has been extended to characterize not only
average cost but the full distribution of performance across
the input space. For example, Chen et al. [28] proposed
an approach using probabilistic symbolic execution to derive
performance distributions rather than single-point estimates.
This enables modeling not just expected runtime, but also the
variance and tail behaviors of performance under uncertainty.

To represent conditional branches along an execution path,
we use the notation @(condition) to denote the occur-
rence of a branching condition within the code, i.e. the
pre-conditions of this path. This can be done via symbolic
execution [5].

2.2.1 Example

Consider the following code snippet:

1 int x;
2 @((x > 20) && (x <= 100))
3 x = x - 10; if (x > 30) {...} else {...}

This format is also used in our instrumentation output to
log the sequence of conditions encountered during execution.
This program has two feasible paths:

• PT : takes the branch where x - 10 > 30
• PF : takes the branch where x - 10 <= 30

The corresponding path conditions are:

1 PT : (x > 20) && (x <= 100) && (x - 10 > 30)
2 PF : (x > 20) && (x <= 100) && (x - 10 <= 30)

With a model counting tool [4, 7, 21], we will have: δT =
60 and δF = 20. For simplicity, we assume the following
mems values for the two branches as hypothetical examples:
pindT = 3 and pindF = 2. Then the overall performance
estimate is:

Performance =
60 ∗ 3 + 20 ∗ 2

60 + 20
=

260

80
= 2.75

This value reflects the average number of operations to be
executed with any concrete inputs in the input domain.

2.2.2 Remarks

This method is particularly useful in early-stage design
and static optimization, where empirical timing information
is not yet available. It can also guide compiler decisions or
resource estimation in embedded systems, where performance
metrics like memory operations are more meaningful than raw
execution time.

3. APPROACH

The concept of using memory access counts, mems, as a
machine-independent performance indicator was first proposed
by Knuth. In his book The Stanford GraphBase [6] and further
discussed in the The Art of Computer Programming [16],
Knuth introduced the idea of instrumenting programs with a
mems counter to reflect the computational cost associated with
memory operations, independent of processor speed.

Building on this idea, our previous work [1] proposed a
symbolic estimation framework in which mems is calculated
along individual control-flow paths. The paper further sug-
gested aggregating these per-path mems values using weighted
averages based on symbolic path frequencies to obtain a
performance estimate for the entire program.

However, despite the elegance of this theory, none of these
studies provided empirical validation on real-world programs.
As a result, it remains unclear whether mems values meaning-
fully correlate with execution time in practice, especially for
modern C programs across various input paths and platforms.

To bridge this gap, we perform large-scale experiments
by executing instrumented C programs and collecting path-
level metrics—mems, path length, and runtime. This requires
the construction of a precise and automated instrumentation
framework, detailed below.

3.1 Instrumentation Pipeline
To facilitate data collection, we built a Clang-based tool named
eppather-clangpass. This tool integrates directly with
Clang’s AST infrastructure and modifies the source code by
inserting instrumentation logic into user-defined functions (ex-
cluding main). During execution, the instrumented program
records the control-flow path, memory access count (mems),
path length, and timing metrics, all printed to standard output
for batch analysis. The instrumentation pipeline operates in
the following stages:
• Function Entry and Exit. At the entry of each user-

defined function, we insert definitions and initializations
for the variables used to track performance metrics,
including mems, path_len, and timing variables
such as start, end, and freq (on Windows, using
QueryPerformanceCounter APIs). At the function
exit (before every return statement), we insert logic to
compute and print the total execution time, memory access
count, and path length.

• Conditional and Loop Statements. For every condi-
tional or loop predicate (e.g., if, while, for), we
inject a printf statement to record the evaluation of
the branch condition. The true branch is annotated as
@(condition), while the false branch is annotated as
@(!(condition)), where condition is the string
representation of the original source predicate. Each branch
point also increments the path length counter.

• Assignment Statements. Each assignment operation is
instrumented with a printf that logs the source-level
statement as a step in the execution path. This captures the
concrete path taken through the program logic.

3

• Array Access Detection. For assignments or expressions
involving array reads or writes (e.g., arr[i] = ... or
... = arr[i]), we increment the mems counter accord-
ingly. For example, a statement like arr[i] = arr[i]
+ 1 is counted as two memory operations— read and write.
This instrumentation strategy allows us to track symbolic

path conditions, memory usage, and runtime characteristics in
a unified and automated way. The resulting output can then
be parsed for further batch analysis to assess the relationship
between static metrics (like mems) and dynamic behavior (like
execution time).

3.2 Instrumentation Example
The following listing shows a simplified instrumented version
of a loop-based test program used in RQ1. Red-highlighted
lines represent the original logic of the program (e.g., control
structures and memory operations), while the non-highlighted
lines correspond to the inserted instrumentation code. Instru-
mentation logic is placed before and after control branches and
memory-related expressions to ensure precise path tracking,
memory access counting, and execution time measurement.

Listing 1. Simplified instrumented version with original code highlighted

1 LARGE_INTEGER freq, start, end;
2 QueryPerformanceFrequency(&freq);
3 QueryPerformanceCounter(&start);
4 int a = 0, b = 0, i;
5 for (i = 0; i < n; i++) {
6 path_len = path_len + 1;
7 if (mode > 0) {
8 path_len = path_len + 1;
9 arr[i] = i * 2 + arr[i];

10 mems = mems + 2;
11 mode = mode - 1;
12 } else {
13 path_len = path_len + 1;
14 b = i * 3 + b;
15 mode = mode - 1;
16 }
17 }
18 printf("Total path length: %d\n", path_len);
19 printf("Total memory accesses: %d\n", mems);
20 QueryPerformanceCounter(&end);
21 double time_taken = (double)(end.QuadPart -

start.QuadPart) / freq.QuadPart;
22 printf("Execution time: %f\n", time_taken);

This instrumented version tracks control-flow conditions
using annotated printf statements, counts array memory
accesses using the mems counter, and measures execution time
using high-precision timers.

4. EVALUATION

We evaluate the practicality and predictive power of using
memory access counts (mems) as a static performance metric
through empirical experiments guided by the two research
questions outlined above. Each question is addressed via
multiple targeted validations as follows:

RQ1: Intra-Program Correlation Between mems and Exe-
cution Time. This part of the evaluation aims to determine

whether mems values can effectively indicate performance
differences among paths within the same program.
• Validation 1: Equal-Length Paths. For paths of equal

length within the same program (i.e., same number of
control-flow decisions), we examine whether higher mems
values consistently result in longer execution times. A
motivating example program is constructed with a loop and
branching logic where some paths involve memory accesses
while others do not.

• Validation 2: Path-Wide Correlation. We collect data
for all feasible execution paths in a program and compute
statistical correlations (e.g., Pearson correlation coefficient)
between mems values and corresponding execution times.
This evaluates whether mems provides a monotonic signal
for performance under realistic control-flow variations.

RQ2: Cross-Program Generalizability of mems as a Perfor-
mance Metric. This part investigates whether mems remains a
useful indicator of performance across multiple programs and
environments.
• Validation 1: Server-Side Analysis. We execute a set of

classic algorithm implementations on a high-performance
Linux server, measuring runtime using both the system
time command and Valgrind profiling. We compare mems
values with observed execution times across different pro-
grams.

• Validation 2: Optimization-Free Local Execution. To
reduce noise from compiler optimizations, we rerun all
tests on a local Windows machine with optimization flags
disabled (-O0). Execution time is recorded using high-
precision timing APIs, providing an additional perspective
on the mems-time relationship.

• Validation 3: Single-Core Execution. We further isolate
CPU-level interference by pinning execution to a single
core, thus minimizing variability from thread scheduling
and multi-core interactions. This allows us to assess whether
mems remains predictive under strict serial execution.
These experiments collectively examine both path-level and

program-level implications of mems, helping assess when and
where it offers meaningful insight into performance.

4.1 Experimental Setup
To evaluate the effectiveness of mems as a static perfor-

mance metric, we conducted empirical studies across two
research questions (RQ1 and RQ2), spanning multiple test
environments and benchmark programs. This section summa-
rizes the program corpus, hardware configurations, and timing
methodologies used throughout the experiments.

4.1.1 Program Benchmarks
All experiments, unless otherwise stated, were performed

on a suite of ten classical C benchmark programs, including
sorting, searching, and array-manipulating algorithms. These
programs were selected for their control-flow complexity and
frequent memory access behavior. For RQ1’s first valida-
tion only, we used a specially crafted illustrative program

4

(example.c) designed to isolate the impact of memory
operations under constant path lengths.

4.1.2 Execution Environments

The experiments were carried out on two platforms:
• High-Performance Server (RQ1-V1, RQ1–V2, RQ2–V1):

– OS: Ubuntu 20.04.6 LTS (x86 64), Kernel: 5.4.0-204-
generic

– CPU: Intel® Xeon® E5-2680 v4 CPU of 56 thread
– Memory: 256 GB RAM
– Timing Method: valgrind (callgrind) used to col-

lect amplified, hardware-agnostic execution time
• Local Machine (RQ2–V2, RQ2–V3):

– OS: Windows 11 Home Edition
– CPU: AMD Ryzen 9 7945HX, 2.50 GHz
– Memory: 16 GB RAM
– Compiler: MSVC with /O0 option
– Timing Method: QueryPerformanceCounter used

for high-resolution wall-clock time measurement
– RQ2–V3 additionally fixed CPU affinity to enforce

single-core execution

4.1.3 Measurement Protocol

In all configurations, we systematically varied at least one
input parameter: program size (denoted as n) to influence
both path length and memory access frequency. For each
configuration:
• Each program run 5 times per path, and the average execu-

tion time was recorded.
• Valgrind’s callgrind was used to obtain stable,

instruction-level time metrics.

4.2 RQ1: More Memory Accesses, Longer Execution Time

To examine the relationship between memory access counts
and execution time under controlled conditions, we first study
a single, well-designed C function. This function is crafted
to isolate the effect of memory accesses while keeping the
path length constant, making it ideal for verifying whether
increased mems alone can influence execution time within the
same program.

4.2.1 A Test Case: Memory Accesses Impact Execution Time

We begin with a simple C function designed with a loop
containing a conditional branch, as shown in Listing 2. In this
function, the true branch modifies an array (incurring memory
accesses), while the false branch performs only arithmetic
operations. This setup offers a controlled environment to
analyze the impact of memory accesses on execution time,
while keeping the path length consistent across different loops.

Table I presents the refined experimental results collected
from uninstrumented programs. Each row corresponds to a
specific execution path controlled by two input parameters:
• p1(n): The first parameter, representing the input size of

the program, corresponding to the variable n in the snippet.

Listing 2. Function with conditional memory access

1 void test(int n, int mode) {
2 int arr[n], a = 0, b = 0;
3 for(int i = 0; i < n; i++) {
4 if(mode > 0) {
5 arr[i] = i * 2 + arr[i];
6 mode = mode - 1;
7 } else {
8 b = i * 3 + b;
9 mode = mode - 1;

10 }
11 }
12 }

TABLE I
REFINED RESULTS: EXECUTION AND VALGRIND TIME ON

UNINSTRUMENTED PROGRAMS

p1 p2 file len mems t0(ms) vg0(ms)
100 0 path 6 200 0 0.068 8.488
100 50 path 7 200 100 0.061 8.189
100 100 path 8 200 200 0.052 7.762
500 0 path 9 1,000 0 0.241 12.818
500 250 path 10 1,000 500 0.178 12.289
500 500 path 11 1,000 1,000 0.187 12.399

10,000 0 path 30 20,000 0 0.079 5.729
10,000 2,500 path 31 20,000 2,500 0.092 5.555
10,000 5,000 path 32 20,000 5,000 0.089 5.838
10,000 7,500 path 33 20,000 7,500 0.116 5.718
10,000 10,000 path 34 20,000 10,000 0.128 5.538
50,000 0 path 35 100,000 0 0.362 8.015
50,000 12,500 path 36 100,000 12,500 0.418 9.257
50,000 25,000 path 37 100,000 25,000 0.546 8.718
50,000 37,500 path 38 100,000 37,500 0.630 9.018
50,000 50,000 path 39 100,000 50,000 0.639 8.824

100,000 0 path 40 200,000 0 0.720 9.824
100,000 25,000 path 41 200,000 25,000 0.857 10.585
100,000 50,000 path 42 200,000 50,000 1.051 11.500
100,000 75,000 path 43 200,000 75,000 1.201 12.427
100,000 100,000 path 44 200,000 100,000 1.361 14.158
200,000 0 path 45 400,000 0 1.319 15.259
200,000 50,000 path 46 400,000 50,000 1.662 16.742
200,000 100,000 path 47 400,000 100,000 2.077 18.213
200,000 150,000 path 48 400,000 150,000 2.467 19.587
200,000 200,000 path 49 400,000 200,000 2.544 21.368

• p2: The second parameter, denoted as mode in the program,
controls whether the execution path takes the memory-
intensive (true) branch or the lightweight (false) branch
during loop iterations.

The remaining columns report various metrics collected
during execution:

• t0(ms): The actual execution time (in milliseconds) of the
original, uninstrumented program.

• vg0(ms): The execution time (in milliseconds) as reported
by valgrind’s callgrind tool, providing a hardware-
agnostic proxy for instruction cost.

These metrics provide insight into how the number of mem-
ory operations correlates with execution time under different
program scales and path conditions. For higher values of n,
where memory operations become significant, a consistent pro-
portional relationship was observed between increased mems
and longer execution times, supporting the hypothesis that
mems can be a significant indicator of execution time in similar
path lengths.

Figures 1 and 2 illustrate the relationship between mems and

5

0 100000 200000 300000 400000 500000
mems

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Va
lg

rin
d

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Effect of mems on Execution Time (Valgrind) for Different Path Lengths

Path Length 20
Path Length 100
Path Length 200
Path Length 1000
Path Length 2000
Path Length 10000
Path Length 20000
Path Length 100000
Path Length 200000
Path Length 400000
Path Length 600000
Path Length 800000
Path Length 1000000

Figure 1. Graphical representation of memory access fre-
quency and execution time correlation.

0 1000 2000 3000 4000 5000
mems

0.0047

0.0048

0.0049

0.0050

0.0051

0.0052

0.0053

0.0054

0.0055

Va
lg

rin
d

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Effect of mems on Execution Time (Valgrind) for Path Lengths Below 20000

Path Length 20
Path Length 100
Path Length 200
Path Length 1000
Path Length 2000
Path Length 10000

Figure 2. Analysis of path length impact on execution time
across different test conditions.

TABLE II
CORRELATION COEFFICIENTS BETWEEN MEMORY USAGE AND

EXECUTION TIME

Program Correlation Coefficient Interpretation
Array 0.99980 Very strong
Bubble 0.99980 Very strong
Insertsort 0.99996 Very strong
Sieve 0.99986 Very strong
Topo 0.99900 Very strong

Valgrind execution time under fixed path lengths. When the
path length is relatively large (e.g., greater than 10,000), a clear
positive correlation emerges: higher mems values generally
correspond to longer execution times. However, for shorter
paths (e.g., path length less than 1,000), this trend becomes
less consistent. The execution times in these small-scale cases
are more susceptible to measurement noise and system-level
fluctuations, which obscure the underlying correlation and
reduce the predictive utility of mems in such contexts.

These findings validate the proposed theory and reinforce
the importance of considering memory accesses as a key factor
in performance analysis, especially in scenarios with similar
computational paths.

4.2.2 mems–Time Correlation Across Different Path Lengths

While the single test case in RQ1 demonstrated a strong cor-
relation between memory accesses and execution time within
a single program, it remains unclear whether this relationship
holds across different programs with varying control structures
and memory usage patterns. To investigate the generality and
limitations of mems as a performance predictor, we conducted
a comparative study involving multiple benchmark programs.
This section presents the experimental setup and findings from
that cross-program analysis.

The correlation coefficients were calculated to determine
the strength of the relationship between memory usage and
execution time across different program paths. The results are
presented in Table II.

The results indicate a high degree of correlation between
mems and execution time for the algorithms assessed within
the experimental environment. This observation aligns with
the results of specially constructed test cases, supporting the
initial hypothesis of RQ1. The findings preliminarily validate
the use of mems as a static indicator capable of reflecting per-
formance costs across different paths, thereby substantiating
the conjecture posed in RQ1.

Answer to RQ1 (Finding 1). These results demonstrate
the feasibility of using mems as a performance metric to
analyze the efficiency of various algorithmic paths. The strong
correlations observed suggest that memory usage can reliably
predict execution time, making it a valuable tool for optimizing
algorithm performance in similar settings.

4.3 RQ2: mems–Time Correlation Across Programs

The motivating example previously presented indicates that,
given identical program path lengths, the size of memory ac-
cesses (mems) impacts execution time significantly. Following
Knuth’s theoretical framework, it is expected that programs
with similar path lengths and mems across different codes
exhibit similar execution times. To examine whether mems can
be a reliable performance indicator across diverse codebases,
we conducted experiments using ten benchmark programs
focused primarily on array-based operations such as sorting
and searching algorithms.

4.3.1 Server-Side Evaluation: Partial Correlation but Inconsis-
tent Predictability

Experiments on the server utilized the same environment as
described in RQ1. Execution times measured via valgrind
correlated strongly (correlation coefficient of 0.98) with
those obtained using the Linux time command, validating
valgrind’s measurements as suitable for further analysis.

As shown in Fig. 3, the combined scatter plots clearly
illustrate general positive correlations between mems, path
length, and execution time across different experimental
conditions. Despite this general trend, substantial deviations

6

0.0 0.2 0.4 0.6 0.8 1.0
Memory Usage (mems) 1e6

0.00

0.02

0.04

0.06

0.08

0.10

Ex
ec

ut
io

n
Ti

m
e

(te
st

0)
 (m

s)
Memory Usage vs. Execution Time (test0)

0.0 0.2 0.4 0.6 0.8 1.0
Memory Usage (mems) 1e6

0

1

2

3

4

5

6

Va
lg

rin
d

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Memory Usage vs. Valgrind Execution Time

0.0 0.2 0.4 0.6 0.8 1.0
Path Length 1e6

0.00

0.02

0.04

0.06

0.08

Ex
ec

ut
io

n
Ti

m
e

(te
st

0)
 (m

s)

Path Length vs. Execution Time (test0)

0.0 0.2 0.4 0.6 0.8 1.0
Path Length 1e6

0

1

2

3

4

5

Va
lg

rin
d

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Path Length vs. Valgrind Execution Time (test0)

Figure 3. Scatter plots illustrating the relationship between mems, path_length, and execution time across different experimental scenarios.

and outliers remain, suggesting that neither mems nor path
length individually provides a fully consistent predictor of
execution time.

To further explore this issue, Fig. 4 divides the dataset
into subsets grouped by similar path length, examining
more closely the relationship between mems and execution
time within each subgroup. Within these finer subdivisions,
correlations vary significantly and sometimes deviate from
the overall trend, emphasizing the complexity and variability
of these relationships. These results highlight the need for
more nuanced interpretation when using mems as a direct
performance metric across diverse program paths.

Table III provides a selection of representative results from
six programs tested on the server. For instance, while both
bubble.c and shell.c have similar mems values (19800
vs. 18800), the runtime of shell.c is noticeably longer,
implying differences in loop structure or arithmetic cost. A
more dramatic deviation is seen in change.c, which has a
long path length but very low mems (only 14), yet its execution
time is comparable to more memory-intensive programs. This
confirms that some programs, especially those with simple
arithmetic or control-heavy operations but minimal memory

TABLE III
SELECTED EXPERIMENTAL RESULTS ON SERVER

Program n Path Len. mems Time (ms)
bubble 100 9,999 19,800 1.857
change 100 10,106 14 1.473
shell 1,000 12,715 18,800 2.743
sieve 5,000 13,175 13,089 1.267
array 5,000 15,002 20,000 1.479
FFT 2,048 18,397 118,592 7.134

activity, can exhibit low mems but still consume substantial
runtime.

Overall, these server-side experiments reveal that although
mems is often correlated with execution time, its predictive
ability is not uniform across all program types. Memory access
count provides useful but incomplete insight into performance
behavior. This reinforces the importance of combining mems
with other indicators (e.g., arithmetic intensity or data depen-
dencies) for more robust performance modeling.

7

0 2000 4000 6000 8000 10000
Memory Usage (mems)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Memory Usage vs. Execution Time
Path Length: 0 1909

Test0 Time
Test0 Trend
Valgrind Test0 Time
Valgrind Trend

0 100000 200000 300000 400000 500000
Memory Usage (mems)

0.000

0.002

0.004

0.006

0.008

0.010

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Memory Usage vs. Execution Time
Path Length: 1909 83797

Test0 Time
Test0 Trend
Valgrind Test0 Time
Valgrind Trend

0.0 0.5 1.0 1.5 2.0 2.5
Memory Usage (mems) 1e6

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Memory Usage vs. Execution Time
Path Length: 83797 600002

Test0 Time
Test0 Trend
Valgrind Test0 Time
Valgrind Trend

0 1 2 3 4 5
Memory Usage (mems) 1e7

0

1

2

3

4

5

6

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Memory Usage vs. Execution Time
Path Length: 600002 126001000

Test0 Time
Test0 Trend
Valgrind Test0 Time
Valgrind Trend

Figure 4. Scatter plots depicting the relationship between mems and execution time after grouping data by similar path_length.

TABLE IV
SELECTED EXPERIMENTAL RESULTS ON LOCAL MACHINE

Program n Path Len. mems Time (ms)
bubble 500 249,999 748,500 117.1
change 500 250,506 14 167.7
sieve 300,000 908,472 907,928 289.4
bubble 1,000 999,999 2,997,000 485.9
insertsort 5,000 12,507,498 25,004,998 14,913.2
bubble 4,000 15,999,999 47,988,000 28,550.7

4.3.2 Local Machine Experiments: Stronger Trends Under
Varied Memory Loads

To account for the influence of high-performance hardware
on timing variability, additional experiments were conducted
on a local Windows 11 environment, disabling compiler op-
timizations (/O0) to minimize measurement noise. Execution
times were measured using QueryPerformanceCounter
instead of valgrind.

Table IV summarizes selected results from our local ma-
chine experiments, highlighting key findings related to the re-
lationship between mems and execution time. The experiments
illustrate that while paths within the same or similar programs
generally demonstrate predictable trends—such as paths with
significantly higher memory access counts (mems) typically
exhibiting longer execution times—this correlation does not
universally hold across different programs. For instance, com-

paring the programs bubble(500) and change(500),
both having nearly identical path lengths, reveals a no-
table anomaly: despite bubble featuring substantially greater
mems (748,500 vs 14), it executes faster (117.1 ms vs 167.7
ms).

Such inconsistencies emphasize that while mems effectively
differentiates between paths with stark contrasts in memory
intensity, it does not reliably predict execution times across
structurally diverse programs or different algorithmic classes.
Factors such as cache locality, loop complexity, arithmetic op-
eration intensity, and control-flow structure likely contribute to
these deviations, underscoring the need for additional metrics
or combined analysis strategies to achieve more accurate cross-
program performance predictions.

4.3.3 Single-Core Execution: Limited Gains, Persistent
Anomalies

The experimental outcomes reveal that while mems gen-
erally exhibit a positive correlation with execution time, this
relationship is frequently inconsistent or obscured by other
variables such as algorithmic characteristics and input size.
Notably, input size itself demonstrated a strong correlation
(0.9736) with execution time, overshadowing mems as a stan-
dalone predictor. Figure 5 illustrates the clear positive trend

8

0 20000 40000 60000 80000 100000
param_1 (Problem Size)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Ex
ec

ut
io

n
Ti

m
e

(m
s)

param_1 vs exe_time(ms) (correlation = 0.975)

Figure 5. Scatter Plot of Input Size vs. Execution Time

TABLE V
SPEEDUP RATIOS BETWEEN SINGLE-CORE AND MULTI-CORE

EXECUTIONS ACROSS DIFFERENT mems INTERVALS

mems Single-core Time (ms) Multi-core Time (ms) Speedup Ratio
<1k 0.217 0.170 1.28×

1k–10k 2.192 1.709 1.28×
10k–100k 0.078 0.061 1.29×
100k–1M 0.599 0.550 1.09×
1M–10M 2.842 2.593 1.10×

between input size and execution time, emphasizing that larger
input sizes consistently lead to longer execution times.
Considering the possibility that multi-core execution envi-
ronments could introduce bias or inconsistencies into our
experimental results, we restricted the experiments to single-
core execution. In Windows, this single-core CPU affinity was
enforced using the command:

cmd /c start /affinity 1

We reused our previously established benchmarks and com-
pared their results in single-core versus multi-core settings.

To clearly understand how execution times vary under
different memory access (mems) intensities, we partitioned
the data into six magnitude-based intervals: < 1K, 1K–10K,
10K–100K, 100K–1M , 1M–10M , and > 10M . Figure 6
visually presents the execution time distributions for multi-
core and single-core environments across these intervals.

From Fig. 6, it can be observed that multi-core execution
consistently outperforms single-core execution across all inter-
vals. Nonetheless, the performance gains differ notably among
intervals. Specifically, the largest average speed-up ratio of
approximately 1.29× is observed within the intermediate load
interval (104–105 mems). In contrast, while multi-core con-
figurations maintain advantages at high load intervals (above
106 mems), the speed-up ratios tend to stabilize and diminish
slightly due to system-level limitations such as scheduling
overheads and memory bandwidth bottlenecks.

Table V provides the quantified speedup ratios when com-
paring execution times under single-core versus multi-core

TABLE VI
SINGLE-CORE EXECUTION EXAMPLES

Program Path Len. mems Time (s)
array path 13 240,002 320,000 0.135
bubble path 3 249,999 748,500 0.251
change path 2 250,506 14 0.188
sieve path 14 263,282 262,985 0.201

environments across different mems intervals. As previously
noted, the multi-core configuration consistently outperforms
the single-core environment, with peak acceleration of ap-
proximately 1.29× observed in the interval of 104–105 mems.
However, for larger intervals (above 105 mems), the speedup
becomes less pronounced, likely due to inherent system con-
straints such as memory bandwidth limitations and scheduling
overhead.

Though restricting execution to a single-core environment
indeed impacts certain benchmarks, the overall difference is
relatively modest compared to amplification techniques such
as Valgrind. Still, variations exist among different programs,
suggesting nuanced effects rather than a uniform scaling factor.
For instance, Table VI provides detailed results comparing
single-core and multi-core executions for selected represen-
tative test cases:

Similar to the multi-core experiments, comparisons involv-
ing the change.c program exhibit a clear positive correlation
between memory access counts and execution time. Neverthe-
less, we observe notable exceptions. Specifically, the bubble
sort program, despite exhibiting a significantly greater path
length and higher mems than the array program, paradoxically
displays less than half the execution time. Such anomalies
suggest that neither single-core nor multi-core execution envi-
ronments alone account fully for observed deviations. Hence,
additional factors, possibly including data locality, memory
caching patterns, algorithmic complexity, and even compiler
optimizations, must be considered to explain these discrepan-
cies adequately.

In summary, while single-core execution control provides
additional clarity regarding the influence of CPU concurrency,
it confirms that substantial variations in execution times and
memory access correlations cannot be explained solely by
CPU affinity. This indicates a necessity for exploring further
system and algorithm-specific characteristics that influence
runtime performance.

Answer to RQ2 (Finding 2). When comparing across
different programs, mems exhibits partial correlation with
execution time but lacks consistency as a standalone metric.
While programs with significantly higher mems values often
demonstrate longer runtimes, numerous counterexamples re-
veal that factors such as algorithmic structure, loop nesting,
and data access patterns can dominate performance behavior.
In many cases, execution time is more strongly correlated with
input size or implementation-specific details rather than mems
alone. Additionally, variations across platforms and compiler
configurations further diminish the reliability of mems as a

9

0 200 400 600 800 1000
mems

0.0015

0.0010

0.0005

0.0000

0.0005

Ex
ec

ut
io

n
Ti

m
e

(m
s)

mems in <1k
Single-core
Multi-core
Single Trend
Multi Trend

2000 4000 6000 8000 10000
mems

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

Ex
ec

ut
io

n
Ti

m
e

(m
s)

mems in 1k 10k
Single-core
Multi-core
Single Trend
Multi Trend

10000 20000 30000 40000 50000 60000 70000 80000 90000
mems

0.00000

0.00005

0.00010

0.00015

0.00020

Ex
ec

ut
io

n
Ti

m
e

(m
s)

mems in 10k 100k
Single-core
Multi-core
Single Trend
Multi Trend

100000
200000

300000
400000

500000
600000

700000
800000

900000

mems

0.0005

0.0010

0.0015

0.0020

Ex
ec

ut
io

n
Ti

m
e

(m
s)

mems in 100k 1M
Single-core
Multi-core
Single Trend
Multi Trend

1 2 3 4 5 6 7 8 9
mems 1e6

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

Ex
ec

ut
io

n
Ti

m
e

(m
s)

mems in 1M 10M
Single-core
Multi-core
Single Trend
Multi Trend

1 2 3 4 5 6 7
mems 1e7

0.01

0.02

0.03

0.04

0.05

0.06

Ex
ec

ut
io

n
Ti

m
e

(m
s)

mems in >10M
Single-core
Multi-core
Single Trend
Multi Trend

Figure 6. Execution time distributions comparing single-core and multi-core executions, grouped by memory accesses (mems) magnitude intervals.

cross-program performance predictor. These findings suggest
that mems can be informative but should be interpreted in
conjunction with other structural metrics such as path length
or input scale to yield reliable performance insights.

4.4 Regression-Based Validation

To rigorously assess the relationship between mems and ex-
ecution time, we apply log-log linear regression models. This
approach quantifies monotonic trends and enables estimation
of effect sizes and prediction confidence.

Global Analysis. Using data aggregated from all bench-
marks, we fit two models:

log(exe time) = α+ β · log(mems) + ϵ (1)

log(path length) = α′ + β′ · log(mems) + ϵ′ (2)

The regression between mems and execution time yields
β = 0.439 (95% CI : [0.325, 0.554]), R2 = 0.412, while the
result for path length gives β′ = 0.443 (R2 = 0.338). These
moderate coefficients reflect inter-program variability and are
visualized in Figure 7.

Per-Program Analysis. We also conduct per-program re-
gression (Table VII). Most benchmarks show near-linear rela-
tionships between mems and execution time, with R2 values
above 0.99 and β ≈ 1.0. Exceptions such as selectsort
exhibit higher sensitivity, likely due to control-flow irregular-
ities.

Insights. These results confirm that mems is a reliable
static indicator for differentiating execution paths within the

2 4 6 8 10 12 14 16 18
log(mems)

14

12

10

8

6

4

lo
g(

ex
e_

tim
e)

Global Regression: log(mems) vs. log(exe_time)
Data
Fit

Figure 7. Global log-log regression of mems vs. execution
time with 95% confidence interval.

TABLE VII
PER-PROGRAM LOG-LOG REGRESSION OF mems VS. EXECUTION TIME.

Program Coef 95% CI Low 95% CI High R2 N
bubble 0.98 0.96 1.00 0.9996 8
insertsort 0.96 0.93 0.99 0.9988 9
selectsort 1.87 1.77 1.97 0.9970 8
shellsort 0.94 0.87 1.00 0.9949 8
array 0.95 0.91 0.99 0.9946 18

same program. However, its predictive power weakens across
programs due to algorithmic diversity, supporting the need for
complementary metrics in cross-program performance estima-
tion.

10

5. DISCUSSION

Theoretical foundations, including Knuth’s early work [6] and
later analyses [1], support the use of memory access counts
(mems) as a proxy for computational cost. From a hardware
perspective, memory operations—especially those accessing
main memory—incur significantly higher latency than arith-
metic instructions [23]. Our RQ1 experiments reinforce this
view: within the same program, paths with more memory
operations consistently exhibit longer execution times.

However, RQ2 reveals the limitations of mems in cross-
program prediction. Despite controlling for path length, dis-
crepancies emerge due to algorithmic and structural differ-
ences. For instance, loops with better data locality or access
regularity may run faster even with higher mems, benefiting
from cache effects or vectorization. As a purely static metric,
mems cannot capture dynamic behaviors such as cache hits,
prefetching, or memory alignment.

Input size also complicates analysis. Execution time scales
strongly with input parameters (e.g., n), which may over-
shadow the influence of mems in inter-program comparisons.
This suggests that static memory counts are most effective for
comparing paths within the same program, but less reliable
across programs with differing input semantics.

Hardware factors contribute further uncertainty. While we
tested across multiple platforms and controlled for compiler
optimizations (e.g., -O0), we did not model cache hierarchy
or memory latency explicitly. Notably, core count had min-
imal effect on correlation, implying that deeper architectural
features—such as cache policy—may dominate performance
variance.

Instrumentation overhead, particularly from printf, also
introduced measurable delay, especially in short-running pro-
grams. Minimizing this overhead through buffered or low-
intrusion logging would improve timing accuracy.

Lastly, our benchmark suite, though representative of classic
algorithms, remains limited in scale and domain coverage.
Many programs had short absolute runtimes, potentially am-
plifying timing noise. Future work should include larger,
real-world codebases to further validate the robustness and
applicability of mems in static performance estimation.

6. RELATED WORK

Performance analysis has long been a central topic in software
engineering. Early work such as WISE [12] and its hybrid
extension by Noller et al. [13] combined symbolic execution
and fuzzing to improve test coverage. However, purely static
indicators often fail to reflect actual runtime behavior [15],
leading to interest in hybrid approaches that trade precision
for overhead and portability.

In the real-time domain, Worst-Case Execution Time
(WCET) analysis [14, 18] estimates upper bounds for
safety-critical code, but relies on hardware-specific modeling.
Architecture-independent metrics like memory access counts
(mems) offer a potential middle ground. Our work builds on
this idea by evaluating mems as a lightweight, path-sensitive
metric for static estimation.

Recent studies propose new strategies for worst-case analy-
sis and symbolic reasoning. Wu and Wang [29] model worst-
case cost as a posterior inference problem using sequential
Monte Carlo fuzzing. Zhang and Su [30] generate executable
test cases from SMT formulas, bridging formal logic and
empirical evaluation.

At the system level, a utility library named LLAMA [31]
offers a compile-time abstraction for memory access patterns,
decoupling layout from logic. It enables precise control over
memory access and layout strategies across architectures with-
out incurring runtime overhead, which inspires memory-aware
program analysis at scale.

7. CONCLUSION

The metric, mems, can be used to statically calculate a
program’s performance. In this paper, we provide automated
solutions based on the new metric and evaluate it in real
programs. We have found that in the same program, this metric
has a significant positive correlation with the program execu-
tion time; while in different programs, the correlation becomes
less consistent due to significant differences in memory access
patterns and internal structural complexity. We hope that this
metric and such findings can help the research community.
In the future, we will further investigate the applicability
of this metric and extend our analysis to larger and more
diverse codebases to strengthen its impact on software quality
assurance.

ACKNOWLEDGMENT

The authors would like to thank Jun Yan (ORCID: 0000-
0003-2328-0781), Hao Zhang, Zhilin Li(ORCID: 0009-0008-
4048-7817), Yu Xiao(ORCID: 0009-0006-5288-9616), Jiwei
Yan, and the anonymous reviewers for their helpful comments
and suggestions.

This work is supported by the National Natural Science
Foundation of China (NSFC) under grant number 62132020.

REFERENCES

[1] J. Zhang, “Performance estimation using symbolic data,”
in Theories of Programming and Formal Methods, Lecture
Notes in Computer Science, vol. 8051, pp. 346–353,
Springer, 2013.

[2] R. Boyer and J. Moore, “A fast string matching algorithm,”
Communications of the ACM, vol. 20, pp. 762–772, 1977.

[3] R. Cole, “Tight bounds on the complexity of the Boyer-
Moore string matching algorithm,” in Proc. of the 2nd
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 224–233, 1991.

[4] J. Geldenhuys, M. B. Dwyer, and W. Visser, “Probabilistic
symbolic execution,” in Proc. of the International Sympo-
sium on Software Testing and Analysis (ISSTA), pp. 166–
176, 2012.

[5] J. C. King, “Symbolic execution and program testing,”
Communications of the ACM, vol. 19, no. 7, pp. 385–394,
1976.

11

https://orcid.org/0000-0003-2328-0781
https://orcid.org/0000-0003-2328-0781
https://orcid.org/0009-0008-4048-7817
https://orcid.org/0009-0008-4048-7817
https://orcid.org/0009-0006-5288-9616

[6] D. E. Knuth, The Stanford GraphBase: A Platform for
Combinatorial Computing. ACM Press, 1994.

[7] S. Liu and J. Zhang, “Program analysis: From qualitative
analysis to quantitative analysis,” in Proc. of the 33rd
International Conference on Software Engineering (ICSE),
pp. 956–959, 2011.

[8] F. Ma, S. Liu, and J. Zhang, “Volume computation for
Boolean combination of linear arithmetic constraints,” in
R. A. Schmidt, Ed., Proc. of CADE-22, LNCS, vol. 5663,
Springer, pp. 453–468, 2009.

[9] J. Zhang, “Quantitative analysis of symbolic execution,”
presented at the 28th International Computer Software and
Applications Conference (COMPSAC), 2004.

[10] J. Zhang, “Constraint solving and symbolic execution,”
in B. Meyer and J. Woodcock, Eds., Proc. of VSTTE 2005,
LNCS, vol. 4171, Springer, pp. 539–544, 2008.

[11] J. Zhang, S. Liu, and F. Ma, “A tool for computing the
volume of the solution space of SMT (LAC) constraints,”
unpublished draft, Jan. 2013.

[12] J. Burnim, S. Juvekar, and K. Sen, “WISE: Automated
test generation for worst-case complexity,” in Proc. of the
31st International Conference on Software Engineering
(ICSE), Vancouver, Canada, pp. 463–473, May 2009.

[13] Y. Noller, R. Kersten, and C. S. Pasareanu, “Badger:
Complexity analysis with fuzzing and symbolic execu-
tion,” in Proc. of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA),
Amsterdam, The Netherlands, pp. 322–332, July 2018.

[14] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
mann, T. Mitra, et al., “The worst-case execution-time
problem—overview of methods and survey of tools,” ACM
Transactions on Embedded Computing Systems (TECS),
vol. 7, no. 3, pp. 1–53, 2008.

[15] H. Schnoor and W. Hasselbring, “Comparing static and
dynamic weighted software coupling metrics,” Computers,
vol. 9, no. 2, p. 24, 2020.

[16] D. E. Knuth, The Art of Computer Programming, 2nd
ed., vols. 1–3; 1st ed., vol. 4A, Addison-Wesley, Reading,
Massachusetts, 1997. Fascicles of Volume 4 in progress.

[17] C. Saumya, J. Koo, M. Kulkarni, and S. Bagchi,
“XSTRESSOR: Automatic generation of large-scale
worst-case test inputs by inferring path conditions,” in
Proc. of the 12th IEEE International Conference on Soft-
ware Testing, Validation and Verification (ICST), pp. 1–12,
IEEE, 2019.

[18] D. Bundala and S. A. Seshia, “On systematic testing
for execution-time analysis,” CoRR, vol. abs/1506.05893,
2015. [Online]. Available: http://arxiv.org/abs/1506.05893

[19] W. Chen, C. Tatsuoka, and X. Lu, “HiBGT: High-
performance Bayesian group testing for COVID-19,” in
Proc. of the 29th IEEE International Conference on High
Performance Computing, Data, and Analytics (HiPC),
pp. 176–185, IEEE, 2022.

[20] F. Ma, S. Liu, and J. Zhang, “Volume computation for
boolean combination of linear arithmetic constraints,” in

Proc. of the 22nd International Conference on Automated
Deduction (CADE), ser. Lecture Notes in Computer Sci-
ence, vol. 5663, pp. 453–468, Springer, 2009.

[21] C. Ge and A. Biere, “Decomposition strategies to count
integer solutions over linear constraints,” in Proc. of the
30th Int’l Joint Conf. on Artificial Intelligence (IJCAI),
pp. 1389–1395, 2021.

[22] L. Zhang, “eppather: A Test Data Generation Tool for
Unit Testing of C Programs,” GitHub Repository, 2024.
Available: https://github.com/Z769018860/eppather.

[23] J. L. Hennessy and D. A. Patterson, Computer Architec-
ture: A Quantitative Approach, 5th ed. Morgan Kaufmann,
2011.

[24] R. Cheng, L. Zhang, D. Marinov, and T. Xu, “Test-case
prioritization for configuration testing,” in Proc. of the
30th ACM SIGSOFT Int’l Symp. on Software Testing and
Analysis (ISSTA), pp. 452–465, ACM, 2021.

[25] Z. Xu and J. Zhang, “A test data generation tool for
unit testing of C programs,” in Proceedings of the 6th
International Conference on Quality Software (QSIC),
Beijing, China, Oct. 2006, pp. 107–116.

[26] J. Zhang, “Symbolic execution of program paths involv-
ing pointer and structure variables,” in Proceedings of the
4th International Conference on Quality Software (QSIC),
Braunschweig, Germany, Sep. 2004, pp. 87–92.

[27] D. E. Knuth, “Satisfiability and The Art of Computer
Programming,” in Proc. of the 15th Int’l Conf. on Theory
and Applications of Satisfiability Testing (SAT), Trento,
Italy, Jun. 2012, vol. 7317, Lecture Notes in Computer
Science, p. 15, Springer.

[28] B. Chen, Y. Liu, and W. Le, “Generating performance
distributions via probabilistic symbolic execution,” in
Proc. of the 38th Int’l Conf. on Software Engineering
(ICSE), pp. 49–60, ACM, 2016.

[29] H. Wu and D. Wang, “Worst-Case Analysis is Maximum-
A-Posteriori Estimation: Resource Analysis with Se-
quential Monte-Carlo-Based Fuzzing,” arXiv preprint
arXiv:2310.09774, 2023.

[30] C. Zhang and Z. Su, “SMT2Test: From SMT Formulas to
Effective Test Cases,” Proc. ACM Program. Lang., vol. 8,
no. OOPSLA2, pp. 222–245, 2024.

[31] M. Kretz, M. Steuwer, F. Schlachter, H. Wehrheim,
and D. Lürsen, “LLAMA: The Low-Level Abstraction
for Memory Access,” ACM Trans. Archit. Code Optim.
(TACO), vol. 19, no. 4, pp. 1–27, 2022.

12

http://arxiv.org/abs/1506.05893
https://github.com/Z769018860/eppather

	Introduction
	Preliminary
	The mems Metric
	Path-Based Performance Estimation
	Example
	Remarks

	Approach
	Instrumentation Pipeline
	Instrumentation Example

	Evaluation
	Experimental Setup
	Program Benchmarks
	Execution Environments
	Measurement Protocol

	RQ1: More Memory Accesses, Longer Execution Time
	A Test Case: Memory Accesses Impact Execution Time
	mems–Time Correlation Across Different Path Lengths

	RQ2: mems–Time Correlation Across Programs
	Server-Side Evaluation: Partial Correlation but Inconsistent Predictability
	Local Machine Experiments: Stronger Trends Under Varied Memory Loads
	Single-Core Execution: Limited Gains, Persistent Anomalies

	Regression-Based Validation

	Discussion
	Related Work
	Conclusion

